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End member size distributions: End member grain size-shape distributions: EM1 (mode 350 um), EM2 (260

EM1 (mode 400 um), EM2 (300 um), um) and EM3 (180 um) are highly convex, and well-sorted with respect to size

EM3 (210 um) are well-sorted. EM4 and shape. EM4 and EM5 are poorly-sorted with respect to size and shape.

(55 um, 2" mode 150 um) and EMS5 EM4 (180 um) overlaps with EM3 in terms of size but shows a strong decrease

(25 um) are poorly-sorted. in convexity towards coarser grain size. EM5 is significantly finer-grained (40
um, 2" mode ~180 um) and also shows a strong decrease in convexity with
increasing grain size.
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EM compositions:

e Size distributions of EM1, EM2 and
EM3 are very similar for both
mixing models. The shapes of the
size-shape distribution of EM1-
EM3 (QICPIC) indicate that these
components have been
transported as bed load.

Size distributions of EM4 and EM5
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Aim of this study

Here we present an application of a novel methodology for determination of sediment
transport modes based on end-member modelling of grain size-shape distributions from
dynamic image analysis [1]. Surface sediment samples from an active secondary tidal inlet
system along the Dutch coast — the Slufter nature reserve on the island of Texel — are used to
assess the physical meaning of the method’s output in a complex sedimentary system where
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components, whereas the QICPIC
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silty component. The shapes of the
size-shape distributions of EM4
and EMS5 (QICPIC) indicate that

. these components have been
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Methodology

. | Surface sediment samples (n=118) have
e I & | been obtained on a fixed grid (resolution
® @ [ roecunem) | S 125 m) in April 2019.

: » inland dunes south of the main

“" channel - aeolian-dominated
bedload transport.

EM4 is dominant in the main
channel and close to tidal creeks
on the salt marsh = tide-
dominated suspended load
transport.

EMS5 is dominant in the salt marsh
region - tide-dominated

suspended load transport.
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e ® L7 Two types of sedimentological analyses
: have been performed:
* Laser-diffraction particle size analysis
(Sympatec HELOS KR) = grain-size
distribution.
A "R Dynamic image analysis (Sympatec
roredune (s) @D @0 98 QICPIC )-> size-shape distribution.
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Results Conclusions

The median grain size shows a clear spatial distribution pattern which is best described as an Laser-diffraction particle size analysis and dynamic image particle size and shape analysis result in very
overall west-east fining trend. Important to note is that the two instruments produce very similar results for highly convex (‘well-rounded’) sediment particles but strongly divergent results for

similar grain size results. low convex (‘angular’) sediment particles clearly highlighting the often neglected particle-shape effects
Sympatec QICPIC on size analysis.
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(1) the shape of the size-shape distributions allows the distinction of bedload versus suspended-load
transported sedimentary components,

. V| A (2) the modelled size-shape end members show clear spatial distribution patterns reflecting
. sedimentary (sub-) environments which are different in terms of geomorphology, the dominant
transporting agent and overall energy conditions (W to E: high energy - low energy).
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