

IPMV - bio-GAK - pilot WwTW Emmen

Hans Wouters

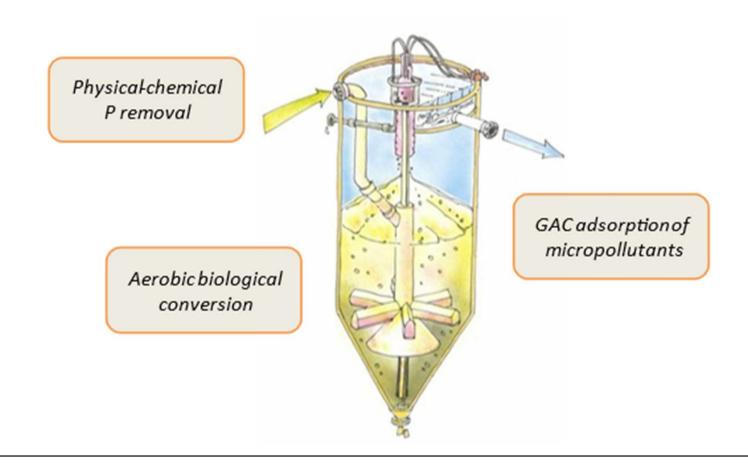
November 8th, 2023

Timeline and project set-up

Research WwTW Emmen

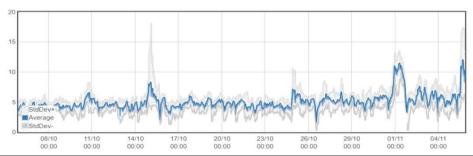
- IPMV pilot in operation: June 2022 September 2023
- Executing partners: Waterboard Vechtstromen, NieuWater, RWB Water, Brightwork
- Participating partners: Waterboards Rijn & Ijssel, Valei & Veluwe, Limburg, Drents Overijsselse Delta, Aquafin
- Final report available in November 2023
- Stowa webinar GAC in February 2024

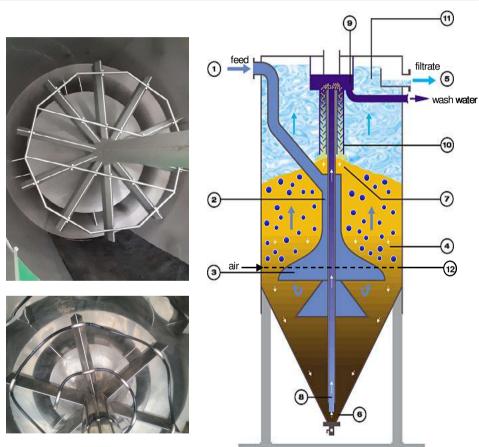
Research WwTW Aartselaar

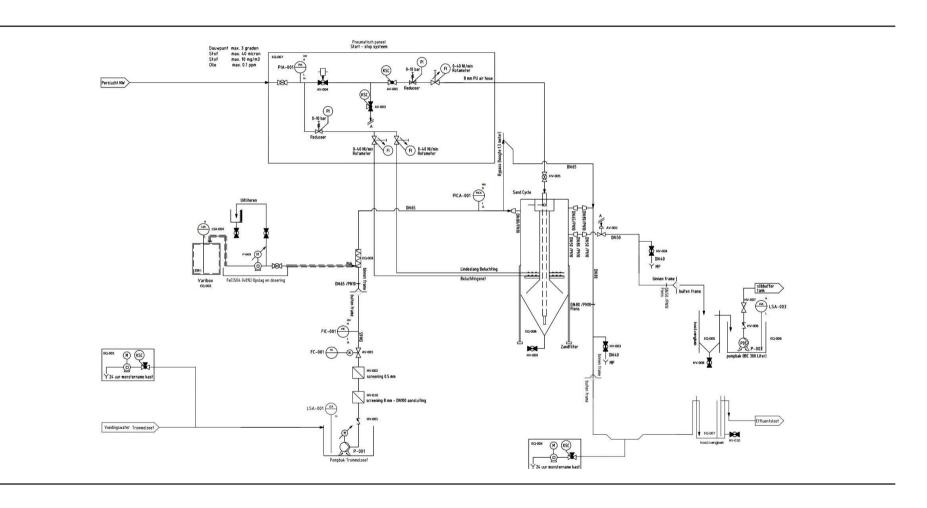

Referencing, comparing results

Work in progress

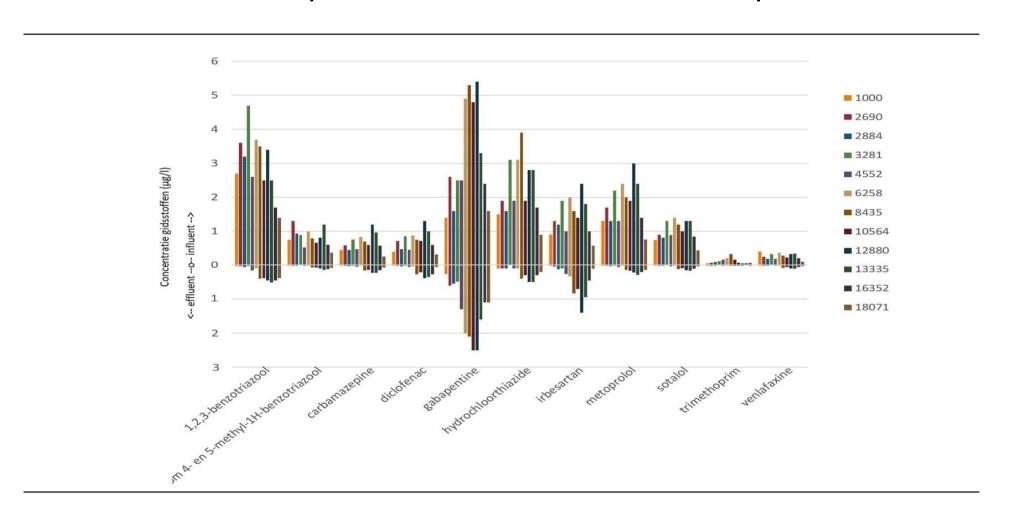
- Research extension with participating partners
- Conversion of existing plants into bio-GAK plants




Technology


Specifications

- Upward continuous filtration (5 6 m/h)
- Feed strainer 2 mm, 2D
- Granular activated carbon media (EBCT: 25 min)
- Fine bubble aeration inside filter bed
- Biological growth on top of granular media
- Inline feed coagulant dosing prior to static mixer
- Controlled circulation and washing of media
- Head loss control

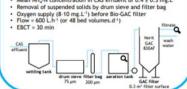


Process set-up

Micropollutants removal in pilot

Timeline of removal efficiency

Parallel research Aquafin


Continuous filtration for micropollutant removal by Biologically Granular Activated Carbon (Bio-GAC)

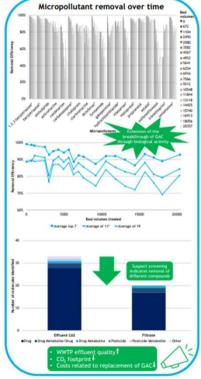
Innovation in Micropollutant Removal from Municipal Wastewater November 8th and 9th 2023 - Aquatech Amsterdam

Setup

- Location
 WWTP of Aartselaar (conventional activated sludge system (CAS)) 54,000 IE (60 gBOD.(IE.d)⁻¹)
- First full scale quaternary treatment (O₃ + GAC) in Flanders
 (Belgium) in operation from November /December 2023
- Pilot study
 Period: June 2022 December 2023
- Mean NH₄-N concentration in CAS effluent of 0.4 ± 0.3 mg.L⁻¹

Optimizing process design

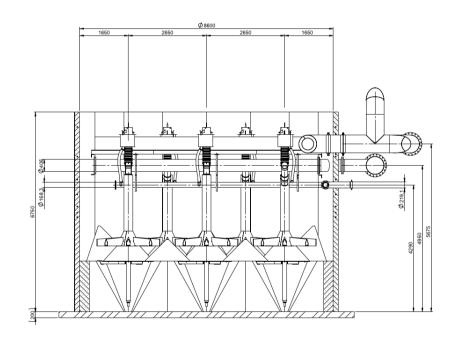
- Indicators of biological activity
- · Increase in bed resistance over tim · Increase in oxygen demand

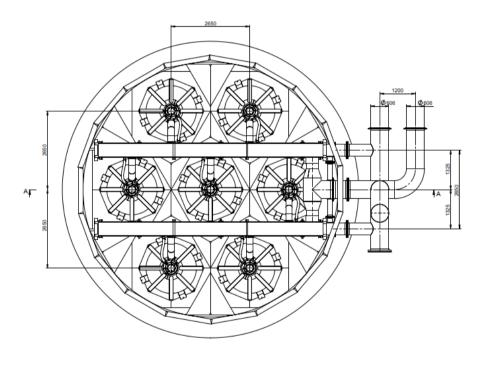

Controlled media circulation (Sand-Cycle) Redesign of airlift and washer assembly

Next steps

- In-depth study of the microbial community using 165 rRNA gene
- amplicon sequencing Combination with P-removal?
- Other type of GAC?

Lennert Dockx - R&D engineer Aquafin NV lennert.dockx@aquafin.be (+32476637003)





100,000 PE plant projection

Design parameter	Value	
DWF design peak	1,040	m³/h
Treated annual volume in tertiary plant	6,130,000	m³/year
Gemiddelde debiet	700	m³/h
EBCT at DWF design peak	25	minutes
Required bed volume	430	m^3
Number of filter units	3	
Surface area/unit	55	m^2
Total installed surface area	165	m^2
GAC	Norit 8 x 30	0,64 - 2,36 mm

Overall plant dimensions: 16 x 32 m²

Upgrading existing assets

RWZI Ruurlo, filter plant for P removal (1996)

3 x 20 m3 filterbed volume

bio-GAK capacity 150 m3/h

RWZI Haarlo, filter plant for P removal (2011)

Transfer to RWZI Lichtenvoorde

6 x 12 m3 filterbed volume

Bio-GAK capacity 250 m3/h

Summary Performances

	UNIT	PACAS	Ozone + Sand Filtration	Bio-GAK
CO ₂ -footprint ¹	g CO ₂ /m ³	122	128	109
Costs ¹	€/m³	0.05	0.17	0.21
Removal Efficiency Dutch guide substances ²	%	70-75%	80-85%	80-85%

¹ 1 Per treated m3 wastewater: peak dry weather flow must be treated. **Please note: standardized cost and CO2 levels for 2018**; recalibration of all CO2- and cost levels will take place during the evaluation of the Innovation Program in 2024

Consequences stricter removal efficiencies Proposal EU Urban Wastewater Treatment Directive (80% in EU instead of 70% in NL and different guide substances):

- PACAS will have a footprint of 160 g CO2/m³ and a cost level of € 0,08/m³; no changes for ozone
- Bio-GAK will have a footprint of 109 g CO2/m³ and a cost level of € 0.21/m³

² Overall Removal Efficiency of effluent wwtp to influent wwtp (including bypass post treatment) for 7 of 11 guide substances: benzotriazool, carbamazepine, diclofenac, irbesartan, gabapentine, metropolol, hydrochloorthiazide, mixture of 4- en 5-methylbenzotriazool, sotalol, trimethoprim en venlaflaxine in every 24h or 48h flow or time proportional sample. The sampling has to take the hydraulic retention time of the wwtp into account.

Thank you for your attention!

Hans Wouters - Brightwork BV hwo@brightwork.nl

Tackling Micropollutants in Wastewater
Results of the Dutch Innovation and Implementation Program

November 8th and 9th, 2023 Aquatech Amsterdam