

Study on Oxidation products

Do's and Don'ts in Implementing Ozone

Arnoud de Wilt

stowa

One study, two reports

- 1. Literature study on oxidation products
 - STOWA 2022-47
 - English
 - International guidance committee
 - EAWAG, RIVM, KWR
 - Drink- & Wastewater experience
- 2. Technical guideline on oxidation products
 - STOWA 2022-46
 - Dutch
 - Practical tool for Water Authorities

Outcomes of the Literature study

- Bromate most relevant oxidation product in Netherlands
- Water matrix affects oxidation product formation
 Multiple factors, e.g. not just bromide concentration
- Oxidation products far less toxic compared to micropollutants (parent compounds)
- Reduction of ecotoxicity on almost all bioassays
 Exception possible in case of specific industrial wastewater

Post-treatment (e.g. sand filter) not necessarily required

➢ No clear added value

oninaDHV

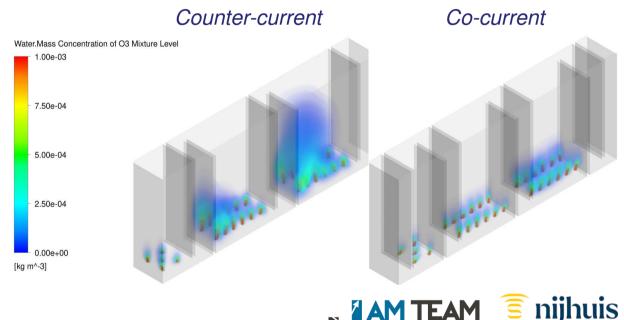
Technical guideline on oxidation products

- Three-step assessment process
 - Per step: Why > Goals > Action > Evaluation (Go / No-Go)
- 1. Monitoring campaign wastewater
 - Solution Which compounds are present
 - Possible source control (e.g. specific industry)
- 2. Lab testing
 - Insight in potential performance
 - Snapshot (one / few samples)
- 3. Pilot testing

LEAF

laskoningDHV

- Relevant conditions for practice
- Assess effectivity of ozonation
- Determine degree of possible negative effects (bioassays)



Mitigation of bromate formation

- In case of high (expected) bromate formation
- Various mitigation measures available:
 - Reactor configuration
 - Multiple ozone injection points
 - Solution ⇒ Alternative reactor configuration
 - \odot H₂O₂-dosing
 - Formation of OH-radicals
 - Sombination of technologies
 - \bigcirc E.g. PAC-O₃, O₃-Step, MicroForce or BO₃
 - Over the set of th

Wrap-up

- Ozonation is sustainable technology for micropollutant removal
 - Significant improvement of water quality after ozonation
 - Reduction of ecotoxicity on most bioassays
 - Exception possible in case of specific industrial wastewater
- Bromate most relevant oxidation product in the Netherlands
 - Solution Selevance is directly related to very strict legislation on surface water, not related to ecotoxicity
 - Multiple measures available to mitigate bromate formation
 - \odot i.a. reactor configuration, H₂O₂-dosing, combination of technologies
- Post-treatment (sand filter) not necessarily required
 - No clear added value

ICAF

askoningDHV

Please use the Technical Guideline, it's there for you

Thank you for your attention!

Arnoud de Wilt

Royal HaskoningDHV

arnoud.de.wilt@rhdhv.com

Tackling Micropollutants in Wastewater Results of the Dutch Innovation and Implementation Program

Ministry of Infrastructure and Water Management November 8 and 9 2023 Aquatech Amsterdam