

Marloes van der Kamp & Guus Kruitwagen

Marloes van der Kamp

- Aquatic ecologist, system analysis group Witteveen+Bos
- Graduate Wageningen university
- Waterboards

- Ambition in work:
 - Increase sustainability of water management in NL and abroad
- Ambition for today:
 - First insight in the ecological key factors

Verification of effects with environmental legislation

Project design and policy

21-2-2019

4

Focus

- What all of us have in common:
 - Our focus is on understanding of ecological functioning
 - No focus on individual species
 - We think in terms of processes and factors
- For example:
 - How can we create conditions to encourage a specific type of nature?
 - How will a project influence the characteristics of an area?
 - · Which factors have caused water quality problems?

System analysis What is it and how does it help you?

Why use system analysis?

- Challenge for water managers all over the world:
 - · Maintain and restore good water quality
 - Selection of the most effective water quality measures
- Much trial and error in application of measures
- Goal : Less spending, more effect

Water framework directive

- Targets defined
- Water quality assessment
- Comparison to targets
- Aim:

realistic goals and effective measures

System analysis in loops

- Identification of key issues and processes
- Do we do the right thing?

- Design of applicable measures
- Verification whether desired effect will be achieved

- Fine tuning

System analysis

- ... is NOT a product
- It's a way of thinking

- How to perform a system analysis?
 - · Question as central element
 - System analysis should provide you the answers
 - The correct answer is obtained by creating understanding of the water system
- Do we understand the system sufficiently?
- Not production of reality
- We learn from differences between models and observations

- Approach differs by question
 - Add as much detail as required to answer your questions
 - ...but not too much
- Proceed with caution, don't get lost in details

One goal, two approaches

- Current condition
 - What can we see / measure?
- Precondition
 - Which factors have led to this situation?

- 1. Current and historical condition
- 2. Model predictions of current state
- 3. Confrontation / dialogue

What tells the state about defining processes? What can we expect based on the defining processes?

- Describe the conditions that have to be met to enable good water quality
- Confrontation current state and processes
- EKFs describe the complex of current state, processes, and interactions

- Hierarchy
- Traffic light concept: only proceed when preceeding EKFs are 'green'
- Tool for identification of the most effective measures

- Conceptual framework to structure assessments
- Meant as guidance, not obligatory
- Continuing development

Ecological Key Factors for stagnant water & floating water

Productivity of the water

Light climate

Productivity of the sediments

Habitat suitability Connectivity

EKF1: Productivity of the water

- Central question:
 - Does the nutrient level support the development of

submerged aquatic vegetation?

- Precondition:

•

Nutrient loading < Critical nutrient load

EKF1: Productivity of the water

Common used tools

- Water- nutriënt balances
- Ecological model PCLake

EKF2: Light climate

- Central question:

•

Does sufficient light reach the sediments to enable germination of seeds?

- Precondition:
 - Amount of light reaching the sediments exceeds the minimum amount of light required for germination of seeds

EKF2: Light climate

Tools

- General rule
 - Transparancy / waterdepth < 0.6
- Attenuation models

EKF3: Sediment productivity

- Central question:

•

- Does the nutrient availability in the sediments enable
 - development of a species rich submerged vegetation?
- Precondition:
 - Nutrient availability < critical nutrient load

EKF3: Sediment productivity

EKF3: Sediment productivity

EKF4: Habitat suitability

- Central question:

•

- Is habitat availability limiting for the presence and/or abundance of those species that are associated with a good water quality?
- Precondition:
 - Habitat availability > habitat requirement

EKF4: Habitat suitability

EKF5: Dispersal

- Central question:

•

- Are there any barriers that limit the dispersal of species that are associated with a good water quality?
- Precondition:
 - The water system is reachable for all species

EKF5: Dispersal

EKF6: Removal

- Central question:

•

- Is the presence and/or abundance of species limited
 - by disturbance or removal?

- Precondition:
 - Removal/disturbance < carrying capacity

EKF6: Removal

EKF7: Organic loading

- Central question:

•

- Does organic loading result in limitations for
 - presence and/or abundance of species?

- Precondition:
 - Oxygen requirement < (minimum) Oxygen availability

EKF7: Organic loading

EKF8: Toxicity

- Central question:

•

- Is the presence and abundance of species limited by
 - the presence of toxic substances?

- Precondition:
 - Concentrations of toxins < Carrying capacity of desired species

EKF8: Toxicity

(E)KF9: Context

- Central question:
 - Which ecological condition is desirable from the viewpoint of the socioeconomic functions of the water system?
- Precondition:
 - Ecology is compatible with socioeconomic functions

EKF9: Context

Ecological Key Factors

Context

Organic load

Toxicity

Specific circumstances

Ecological Key Factors

load

Sum-up

The methodology of the Ecological Key Factors can be used:

- 1. to structure a system analysis;
- 2. as a means to combine and integrate available information;
- 3. for identification of (cost-) effective water quality measures;
- 4. for identification of feasible water quality targets within the existing socio-economic context;
- 5. as a communication tool.

Ecological Key Factors

- EKFs were developed in NL as tool for WFD
- What's their applicability outside NL and EU?

Changi Reservoir

- High ambitions for recreation and residential areas
- Suffering from severe algal blooms
- Budget of SGD 10,000,000 for water quality measures

Changi Reservoir

- Measures and effect...

Case studies

Illustration of use of EKFs and PCLake

Definition of research question

- Occasional water quality problems
- Adverse effect on tourist enjoyment
- Effective water quality measures?

Understanding of current condition

- Inventory of day to day management
- Field monitoring of water quality
- Marine biodiversity survey

Light climate

Light climate

Witteveen · Habitat suitability Palawan Beach, Sentosa Effective measures Identification of key drivers boundaries **Ecological model** **** Nutrient loading Water balance 1

Palawan Beach, Sentosa

Dispersal

Disturbance

Disturbance

- Experience of visitors
- Turbid murky waters
- Beaching of sea weed
- Beaching of oil spills
- Unattractive species

- Measures should primarily improve light climate -
- Measures should focus on key driving processes: _
 - wave attack
 - sediment resuspension -
- Beware, measures aimed at EKF2 could adversely affect EKF1 -

Productivity of the sediments

suitability

Connectivity

Context

- Lake water used for irrigation
- Bad water quality due to insufficient WTP capacity
- Upgrade of WTP needed in combination with measures in the lake

Research question

- What is required from WTP upgrade to get good water quality?

Approach

- Hydrological schematisation
- Assessment of dynamics in hydrology and nutrient loading
- Assessment of carrying capacity in time with PCLake

Goal

- Assess effect of proposed WTP upgrade
- Derive maximum allowable nutrient discharge to the lake

Water flow to Lake NMK

Water flow to Lake NMK

Carrying capacity of Lake NMK

86

Result

- Ecological standard for WTP effluent

Conclusions

- Planned measure give big reduction in nutrient load
- But, further measures needed to ensure good water quality...

www.witteveenbos.com