

STOWA WORKSHOP – BEATING MICROPOLLUTANTS Wastewater Treatment Plants

Full scale plants and research THE NETHERLANDS

Cora Uijterlinde - STOWA

Research

- Report National Institute for Public Health and the Environment:
- At least 140 tonnes pharmaceutical residues emitted into surface water in the Netherlands
- Effects:
 - Tissue damage
 - Endocrine disruption
 - Behavioural impacts
- Routing: 95% via normal use and excretion by patients
- 10% emitted at hospitals and care centres, 90% emitted at home

DAM VISHAL THINKING 2016

End-of-pipe measures

 Implementing existing technologies in NL
 Innovation programme
 Supportive projects

DAM VISHAL THINKING 2016

SEWAG

Impact analysis micro pollutants surface water

- 314 sewage treatment plants in NL
- 2017: analysis of 'hot spots'
- Impacts:
 - Increase of concentration
 - Watercourses affected
 - Drinking water intakes
- ±100 STP's need improvement?

stowa

Funding full scale projects

- € 60mln for stimulating implementation
- € 0,07/m3 (based on Dutch pilots & experiences in DE and CH)
- Monitoring of guide substances
- Biological effect monitoring
- > 10 year in operation

carbamazepine, propanolol, trimethoprim, metoprolol, benzotriazol, mengsel van 4methylbenzotriazol / 5-methylbenzotriazol, hydrochloorthiazide, sulfamethoxazol, diclofenac, clarithromycine, sotalol

experiences

- Visit Switzerland and Germany (2015)
- Technology Overview (2017)
- PACAS (2018)
- Groote Lucht pilot ozone (2018)

Innovation programme micro-pollutants

- Hosted by STOWA
- Funded by Ministry, STOWA and regional water authorities (€11,7 mln during 5 years)
- Focus on:
 - Treatment technologies on the threshold of breaking through
 - Optimisation of existing technologies
 - Technologies should have an added value compared to existing techniques (removal rates, costs, sustainability or eco-toxicological risks)
- Fundamental research in academic programme

Goal innovation program

implementing innovative technologies in 2025 on demo-scale (TRL 7)

stowa

Criteria innovation program

 TABLE 1 Quantitative criteria Innovation Program Removal of Micropollutants at wwtps

	Unit	PACAS	Ozone+sand filter	GAC	
CO ₂ footprint	g CO ₂ /m ³ (1	116	119	325	
Costs	€/m³ (1	0.05	0.17	0.26	
Removal efficiency guide substances Ministry of					
Infrastructure and Water Management	% (2	70-75%	80-85%	80-85%	

1) per treated m3 wastewater

carbamazepine, propanolol, trimethoprim, metoprolol, benzotriazol, mengsel van 4-methylbenzotriazol / 5-methylbenzotriazol, hydrochloorthiazide, sulfamethoxazol, diclofenac, clarithromycine, sotalol

INNOVATION PROGRAM 2019

zeolieten bio-activated carbon sandfiltration cyclodextrine

PACAS + Fe PACAS Nereda Cloth filtration AC Effects on sludge treatment

ozone with ceramic microfiltration pretreatment and nanofiltration nanofiltration effluent Pharem - enzymes

Usoniq PAC4TOC UV/H2O2 and ozone transformation / residues

FIGURE 4 Planning

	2019	2020	2021	2022	2023			
Assessment feasibility studies 2018	• • • • • •							
Further elaboration and pilots assessment 2018	• • • • • • • • • • • • • • •							
Assessment 2020	• • • • • •							
Assessment feasibility studies 2020								
Further elaboration and pilots assessment 2020								

Supportive projects

- > Harmonising analysing methods (incl. taking samples)
- Biological effect monitoring
- > Knowledge exchange with neighbouring countries
- research on micropollutants in rain weather flow and dry weather flow
- > developing tool for dimensioning hydraulic capacity

Knowledge exchange

- Regional water authorities discuss experiences
- Technical (performances of techniques)
- Monitoring (what protocols)
- Decision making process within organisation

Conclusions

- Ready to beat micropollutants at WWTP
- Implementation full scale
- Boost in innovative technologies at WWTP