## Micropollutants: The Singapore Experience

#### Siao Yun CHANG Water Quality Department 5 Nov 2019



ME GARA

#### **Country Information**



Land Area:724.2 km² (279.6 mi²)Population:5.7millionAverage Annual Rainfall:2,330mm (92 inches)Average Water Demand:430 migd (516.4 mgd / 1585 acre-foot/day)

### We Are PUB. We Are Water



"To ensure a clean sustainable environment, and supply of water and safe food for Singapore."



"To ensure a clean and sustainable environment for Singapore, together with our partners and the community"

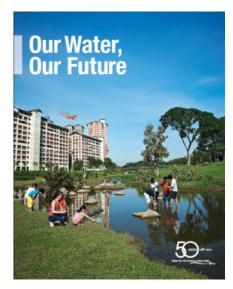
\* Clean Land

\* Clean Air

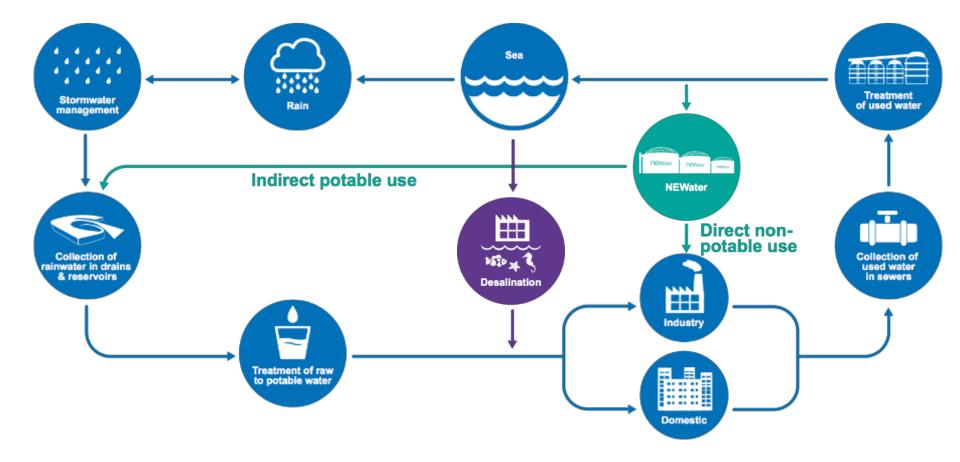


"To ensure and secure a supply of safe food."

✤ Safe Food


\*Public Health

**OPUB** SINGAPORE'S NATIONAL WATER AGENCY


"Supply Good Water. Reclaim Used Water. Tame Storm Water."

\* Clean Water

A Statutory Board constituted under the Public Utilities Act 2001 to provide integrated water supply, sewerage and drainage services



### **PUB** manages the complete water cycle



## **Presentation Outline**

- Research findings on micropollutants in water reclamation plant in Singapore
- PUB's approach on micropollutants management



### Occurrence & Removal of Emerging Contaminants by Conventional Activated Sludge (CAS) and Membrane Bioreactor (MBR) Systems

PI: A/P Karina Gin Researchers: Dr Tran Ngoc Han, Dr You Luhua Department of Civil & Environmental Engineering E2S2-CREATE NUS Environmental Research Institute (NERI)

# **Objectives**

- Investigate the occurrence of ECs in raw wastewater and treated effluent.
- Evaluate the removal of ECs in a full-scale biological wastewater treatment plant using different treatment systems, i.e. conventional activated sludge (CAS) and membrane bioreactor (MBR).



Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine disrupters in a full-scale water reclamation plant



Ngoc Han Tran<sup>a</sup>, Karina Yew-Hoong Gin<sup>a,b,\*</sup>

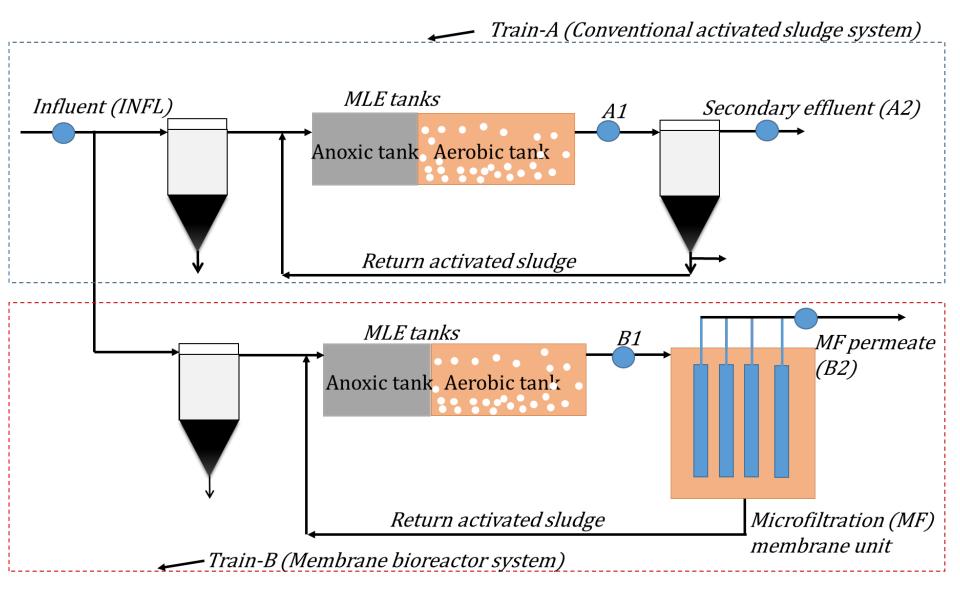
<sup>a</sup> NUS Environmental Research Institute, National University of Singapore, T-Lab Building, #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore <sup>b</sup> Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore

# **Target Emerging Contaminants**

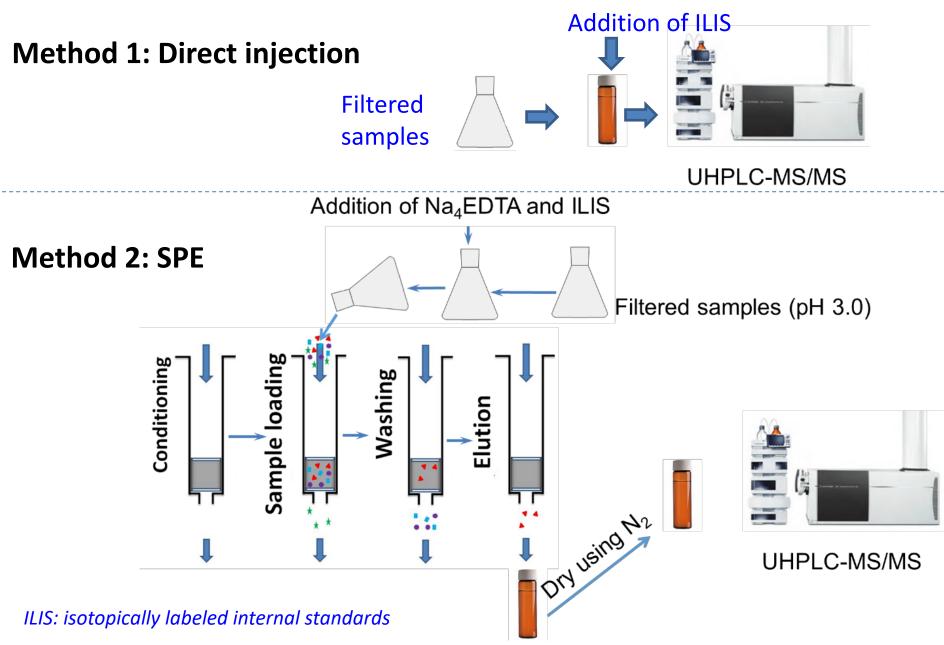
The selection of target ECs was based on at least one of the following criteria:

- High consumption in the world.
- Widespread occurrence in urban wastewater/ treated effluent all over the world as reported in the literature.
- Potential risk to human health and aquatic ecosystems.
- The analytical capability of the laboratory.

## **Target Emerging Contaminants**

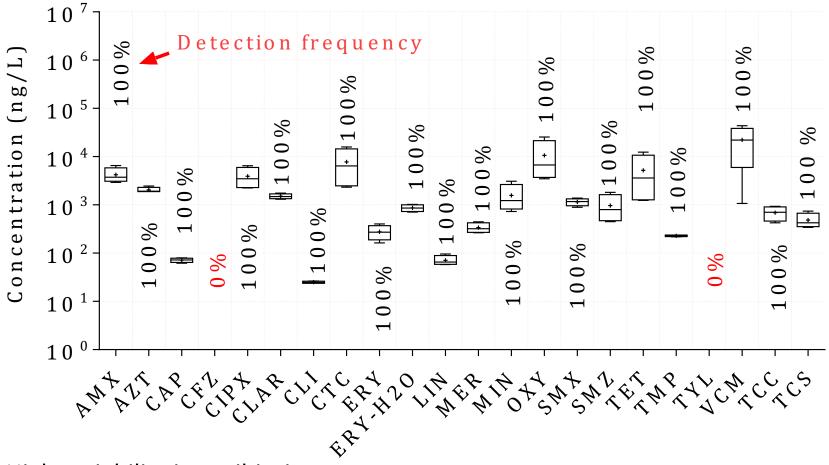

### Antibiotics & Antimicrobials

|    | Class        | Target ECs            | Abbr. |    | Class                  | Target ECs        | Abb |
|----|--------------|-----------------------|-------|----|------------------------|-------------------|-----|
| 1  | β-lactams    | Ceftazidime           | CFZ   | 12 | Sulfonamides           | Sulfamethazine    | SMZ |
| 2  |              | Meropenem             | MER   | 13 | Reductase<br>inhibitor | Trimethoprim      | ТМР |
| 3  |              | Amoxicillin           | AMX   | 14 | Tetracycline<br>family | Tetracycline      | TET |
| 4  | Quinolones   | Ciprofloxacin         | CIPX  | 15 |                        | Minocycline       | MIN |
| 5  | Lincosamides | Lincomycin            | LIN   | 16 |                        | Chlortetracycline | CTC |
| 6  |              | Clindamycin           | CLI   | 17 |                        | Oxytetracycline   | OXY |
| 7  | Macrolides   | Erythromycin          | ERYC  | 18 | Antiseptics            | Triclosan         | TCS |
| 8  |              | Azithromycin          | AZT   | 19 |                        | Triclocarban      | ТСС |
| 9  |              | Clarithromycin        | CLAR  | 20 | Glycopeptide           | Vancomycin        | VCM |
| 10 |              | Tylosin               | TYL   | 21 | Amphenicol             | Chloramphenicol   | CAP |
| 11 | Sulfonamides | Sulfamethox-<br>azole | SMX   |    |                        |                   |     |
|    |              | 42010                 |       |    |                        |                   |     |


### Other ECs

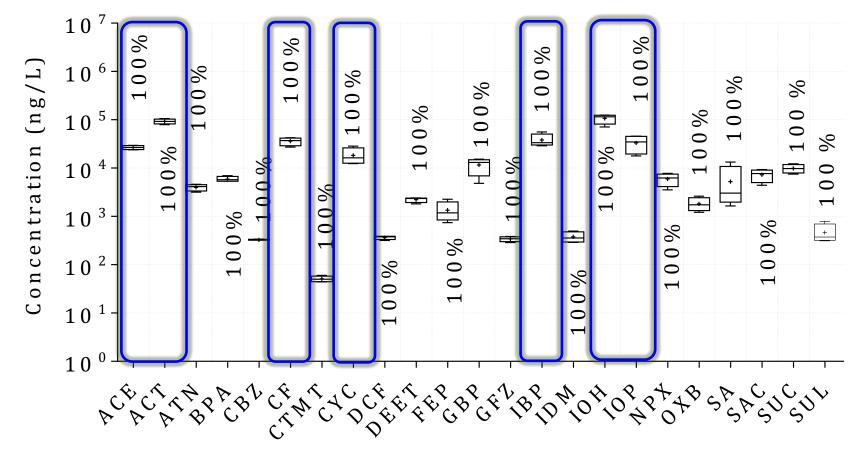
| Νο | Class               | Target ECs     | Abbr. |    | Class          | Target ECs       | Abbr. |
|----|---------------------|----------------|-------|----|----------------|------------------|-------|
| 22 | NSAIDs              | Acetaminophen  | ACT   | 36 | Hormones       | Estrone          | E1    |
| 23 |                     | Ibuprofen      | IBP   | 37 |                | Estriol          | E3    |
| 24 |                     | Naproxen       | NPX   | 38 |                | Cortisone        | C2    |
| 25 |                     | Ketoprofen     | KEP   | 15 |                | Corticosterone   | C1    |
| 26 |                     | Fenoprofen     | FEP   | 39 | UV-filters     | 4-MBC            | 4-MBC |
| 27 |                     | Indomethacin   | IDM   | 40 |                | Octocrylene      | OCT   |
| 28 |                     | Salicylic acid | SA    | 41 |                | Oxybenzone       | OXB   |
| 29 |                     | Diclofenac     | DCF   | 42 | Anti-itching   | Crotamiton       | CTMT  |
| 30 | Lipid<br>regulator  | Clofibric acid | CA    | 43 | Repellent      | Diethyltoluamide | DEET  |
| 31 |                     | Gemfibrozil    | GFZ   | 44 | Artificial     | Acesulfame       | ACE   |
| 32 | Anti-<br>convulsant | Carbamazepine  | CBZ   | 45 | sweetener      | Sucralose        | SUC   |
| 33 |                     | Gabapentin     | GBP   | 46 |                | Cyclamate        | CYC   |
| 34 | Anti-psychotic      | Sulpiride      | SUL   | 47 |                |                  |       |
| 35 | β-blockers          | Atenolol       | ATN   | 48 |                | Saccharin        | SAC   |
|    |                     |                |       | 49 | X-ray contrast | Iohexol          | IOH   |
|    |                     |                |       | 50 | agents         | Iopromidol       | IOP   |
|    |                     |                |       | 51 | Plasticizer    | Bisphenol A      | BPA   |

## **Schematic diagram of Water Reclamation Plant**




### **Methods**




## **Occurrence of Emerging Contaminants in Raw Wastewater**

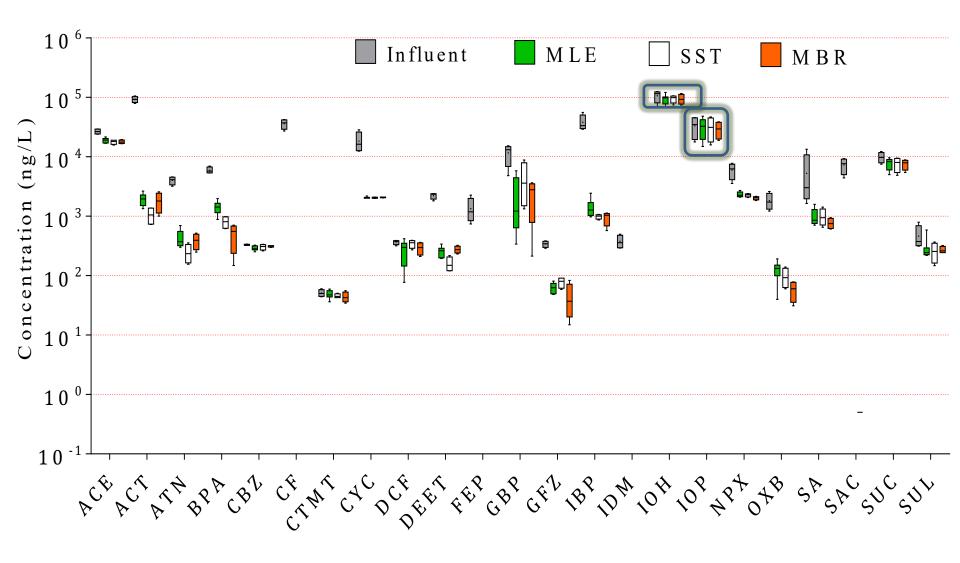
## Antibiotics/Antimicrobials in Raw Influent



- High variability in antibiotics
- All antibiotics, except CFZ and TYL, were detected in raw influent
- β-lactams, macrolides, sulfonamides, fluoroquinolone, and tetracyclines, were detected in raw influent > 1000 ng/L.

### PPCPs, ASs and EDCs in Raw Influent




- All target PPCPs, EDCs, and ASs (except hormones: E1, E3, C1, C2 and OCT) were present in raw influent
- Concentrations of PPCPs, EDCs, and ASs varied substantially, from several tens to upper hundred thousands ng/L, depending upon compound and sampling date
- NSAIDs, X-ray contrast media (IOH and IOP), β-blocker (ATN), ASs (ACE, CYC, SAC, and SUC) were the most abundant compounds and caffeine (CF)

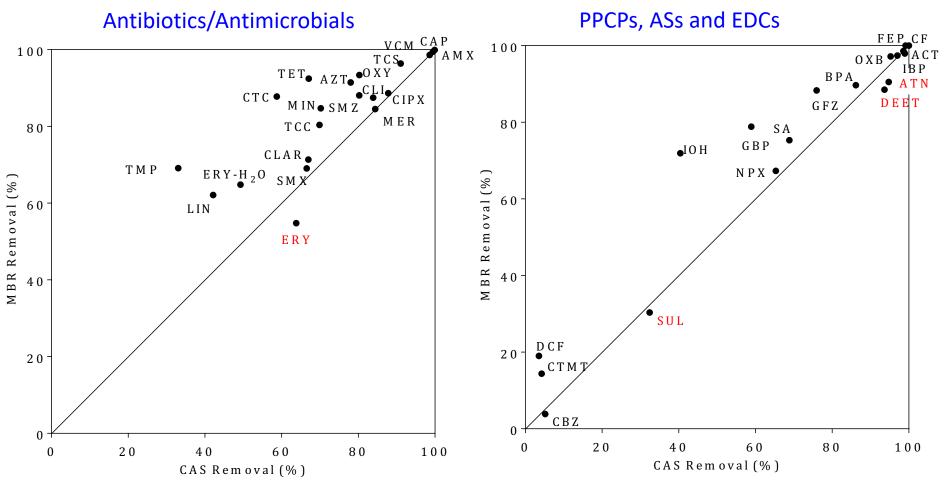
Occurrence of Emerging Contaminants in Treated Wastewater

## **Antibiotics/antimicrobials**



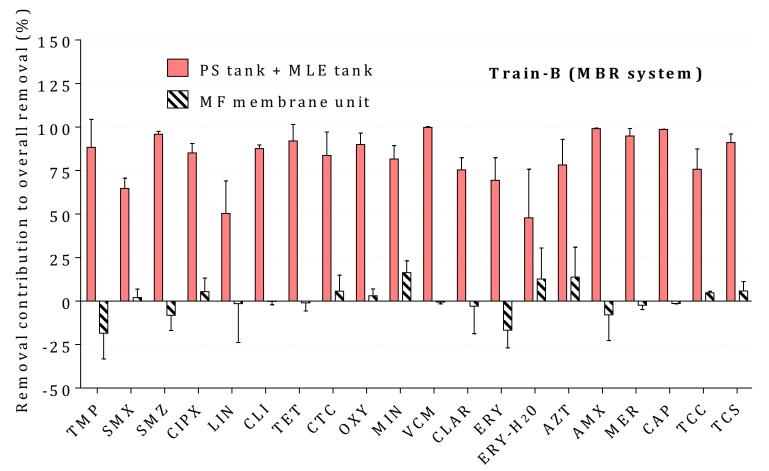
### PPCPs, ASs and EDCs




## Removal of Antibiotics by CAS & MBR Systems

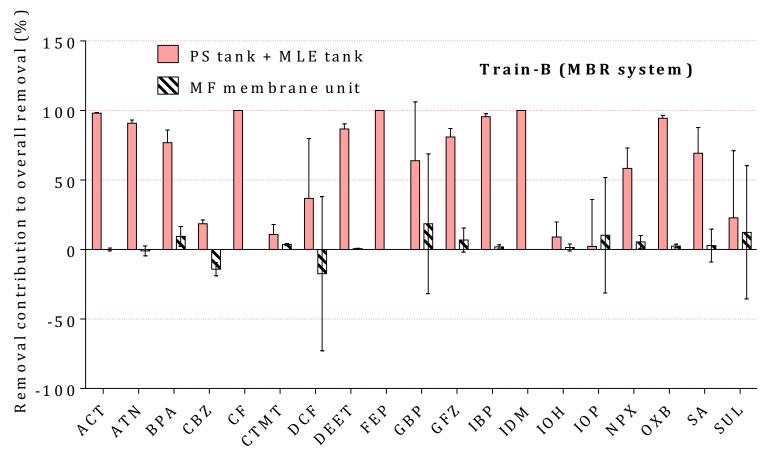
| Target ECs           | % Removal by CAS system (n = 4) |        | % Removal by MBR system (n = 4) |           |        |                    |
|----------------------|---------------------------------|--------|---------------------------------|-----------|--------|--------------------|
|                      | Range                           | Median | Mean <u>+</u> SD                | Range (%) | Median | Mean $\pm$ SD      |
|                      | (%)                             | (%)    | (%)                             |           | (%)    | (%)                |
| MER                  | 80.7–92.6                       | 84.4   | 85.5 <u>+</u> 5.0               | 81–92.3   | 84.5   | 85.6 <u>+</u> 4.9  |
| AMX                  | 99.3–99.7                       | 99.5   | 99.5 <u>+</u> 0.2               | 69.9–99.7 | 99.5   | 92.1 <u>+</u> 14.8 |
| CIPX                 | 76.6–92.4                       | 87.8   | 86.2 <u>+</u> 6.8               | 84.9–99.9 | 88.6   | 90.5 <u>+</u> 6.8  |
| LIN                  | 8.1–56.1                        | 42.1   | 37.1 ± 21                       | -8.1–79.3 | 62.1   | 48.8 ± 38.8        |
| CLI                  | 83.6-85.7                       | 83.9   | 84.3 <u>+</u> 1.0               | 85.8–88.9 | 87.5   | 87.4 <u>+</u> 1.3  |
| ERY                  | 31.4–77.7                       | 63.8   | 59.2 <u>+</u> 19.7              | 26.6–74.9 | 54.8   | 52.3 <u>+</u> 19.8 |
| ERY-H <sub>2</sub> O | 35–64.7                         | 49.3   | 49.6 <u>+</u> 13.8              | 49.9–67.7 | 64.8   | 60.6 ± 10.5        |
| AZT                  | 48.8–80.9                       | 78.0   | 71.4 <u>+</u> 15.3              | 88.6–96.8 | 91.4   | 90.1 ± 3.4         |
| CLAR                 | 51.3–73.8                       | 67.0   | 64.8 <u>+</u> 10.1              | 57.8-89.3 | 71.3   | 72.4 <u>+</u> 13.8 |
| SMX                  | 62.8–77.7                       | 66.6   | 68.4 <u>+</u> 4.5               | 54–74.9   | 69.0   | 66.8 <u>+</u> 8.9  |
| SMZ                  | 52.2–96                         | 80.3   | 76.9 <u>+</u> 19                | 78.4–96.2 | 88.1   | 87.7 <u>+</u> 9.6  |
| TMP                  | 23.8–42.2                       | 33.1   | 33.0 <u>+</u> 7.8               | 67.7–73.3 | 69.1   | 69.8 ± 2.4         |
| TET                  | 44.3–87.6                       | 67.1   | 66.5 <u>+</u> 23.4              | 83.3–95.5 | 92.4   | 90.9 ± 5.6         |
| MIN                  | 44.8-86.9                       | 70.2   | 68.1 <u>+</u> 20.8              | 70.1–86.9 | 84.7   | 81.6 <u>+</u> 7.8  |
| СТС                  | 31.4–88                         | 58.8   | 59.2 <u>+</u> 31.6              | 84–97.8   | 87.9   | $89.4 \pm 6.1$     |
| OXY                  | 54.6–93.9                       | 80.3   | 77.3 <u>+</u> 16.8              | 89.3–96.3 | 93.4   | 93.1 <u>+</u> 3.5  |
| TCS                  | 87.4–94.2                       | 91.1   | 90.9 <u>+</u> 3.6               | 83.8–97.6 | 96.4   | 93.5 <u>+</u> 6.6  |
| ТСС                  | 51.1-84.7                       | 69.9   | 68.9 <u>+</u> 14.9              | 67.9–93.5 | 80.4   | 86.6 <u>+</u> 12.3 |
| VCM                  | 96.6–99.9                       | 99.9   | 99.1 <u>+</u> 1.7               | 97.2–99.9 | 99.9   | 99.3 <u>+</u> 1.4  |
| CAP                  | 98.4–98.8                       | 98.6   | 98.6 <u>+</u> 0.2               | 98.4–98.8 | 98.6   | 98.6 <u>+</u> 0.2  |

### Removal of PPCPs & EDCs by CAS & MBR Systems


|            | Removal by CAS system (n = 4) |               |                  | Removal by MBR system (n = 4) |            |                         |
|------------|-------------------------------|---------------|------------------|-------------------------------|------------|-------------------------|
| Target ECs | Removal range<br>(%)          | Median<br>(%) | Mean ± SD<br>(%) | Removal range<br>(%)          | Median (%) | Mean <u>+</u> SD<br>(%) |
| ACT        | 98.3–99.2                     | 98.9          | 98.9 ± 0.4       | 97.4–98.9                     | 97.9       | 98.0 ± 0.7              |
| ATN        | 88.9–96                       | 94.8          | $93.6 \pm 3.3$   | 83.7–94.6                     | 90.5       | 89.8 ± 4.5              |
| BPA        | 81.9–90.6                     | 86.2          | $86.2 \pm 4.0$   | 88.3–97.9                     | 89.7       | 91.4 ± 4.4              |
| CBZ        | -0.2–19.1                     | 5.2           | 7.3 ± 8.9        | 1.9–7.7                       | 3.9        | 4.3 ± 2.9               |
| CF         | 100                           | 100           | 100              | 100                           | 100        | 100                     |
| CTMT       | 0.4–28.8                      | 4.3           | 9.4 ± 13.1       | 6.8–22.1                      | 14.4       | 14.4 ± 6.9              |
| DCF        | -16.9–28.5                    | 3.6           | 4.7 ± 19.7       | -4.7–44.4                     | 19.0       | 19.4 ± 22.3             |
| DEET       | 88–95                         | 93.7          | 92.6 ± 3.2       | 82.1–90.1                     | 88.5       | 87.3 ± 3.5              |
| FFP        | 98.6–99.6                     | 99.1          | $99.1 \pm 0.4$   | 100                           | 100        | 100                     |
| GBP        | -8.3–91.3                     | 58.9          | 50.2 ± 46.7      | 76.2–95.6                     | 78.8       | 82.4 ± 9.0              |
| GFZ        | 74.9–82.5                     | 76            | 77.3 ± 3.5       | 78.5–95.5                     | 88.3       | 87.7 ± 7.1              |
| IBP        | 96.9–98.2                     | 97            | $97.3 \pm 0.6$   | 96.7–98.1                     | 97.4       | 97.4 ± 0.8              |
| IDM        | 98.3–99                       | 98.6          | 98.6 ± 03        | 98.3–99                       | 98.6       | 98.6 ± 03               |
| -IOH       | 7.3 70.3                      | 40.4          | 40.8 ± 29.8      | 65.9 79.2                     | 71.9       | $72.2 \pm 6.2$          |
|            | -53.7-44.8                    | -16           | -10.2 ± 45.4     | -80.7-53.4                    | 38.5       | $12.4 \pm 63$           |
| NPX        | 36.5–68.9                     | 65.3          | $59.0 \pm 15.1$  | 48.3–72.2                     | 67.3       | 63.8 ± 10.8             |
| OXB        | 92.5–95.7                     | 95.3          | 94.7 ± 1.5       | 95.6–97.5                     | 97.2       | 96.9 ± 0.9              |
| SA         | 12.9–95.1                     | 68.9          | $61.47 \pm 34.6$ | 42.2–95.4                     | 75.3       | 72.1 ± 22.1             |
| SUL        | 9.5–73.5                      | 32.4          | 37.0 ± 31.5      | 20.6–59.3                     | 30.4       | 35.2 ± 18.5             |

### **Comparison Between CAS and MBR**




- MBR generally showed higher removal efficiencies than CAS
- For labile compounds (e.g. beta-lactams, VCM, CIPX, CAP, ACT, IBP, CF, and FEP) or poorly biodegradable compounds (CBZ and SUL), there was no significant difference between CAS and MBR.

# Role of MF Membrane Unit in Overall Removal for MBR system (Antibiotics)



- The treatment in PS and MLE tanks appeared to be the most important processes for removal of all antibiotics and antimicrobials.
- More than 75% of most antibiotics was removed after treatment in [PS + MLE] tanks.

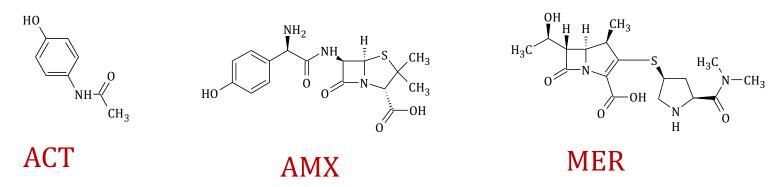
# Role of MF Membrane Unit in Overall Removal for MBR System (PPCP, AS, EDC)



- A significantly higher removal efficiency was observed in [PS+MLE] tanks compared to MF membrane unit for majority of PPCPs & EDCs.
- [PS+MLE] tanks played a key role in the elimination of PPCPs & EDCs in MBR system.

### Comparison of Antibiotics Removal with Literature

| Target<br>compound   | Removal efficiencies observed in<br>this study |            | Removal efficiencies reported in the literature |              |  |
|----------------------|------------------------------------------------|------------|-------------------------------------------------|--------------|--|
|                      | Removal range (%)                              | Median (%) | Removal range (%)                               | Median (%)   |  |
| MER                  | 81–92.3                                        | 84.5       | Not reported                                    | Not reported |  |
| AMX                  | 69.9–99.7                                      | 99.5       | 49.7–100                                        | 99.5         |  |
| CIPX                 | 84.9–99.9                                      | 88.6       | <0–100                                          | 88           |  |
| LIN                  | -8.1–79.3                                      | 62.1       | <0–100                                          | 29           |  |
| CLI                  | 85.8–88.9                                      | 87.5       | <0–88.9                                         | 83.9         |  |
| ERY                  | 26.6–74.9                                      | 54.8       | Not reported                                    | Not reported |  |
| ERY-H <sub>2</sub> O | 49.9–67.7                                      | 64.8       | <0–100                                          | 44.5         |  |
| AZT                  | 88.6–96.8                                      | 91.4       | <0–99                                           | 63           |  |
| CLAR                 | 57.8-89.3                                      | 71.3       | <0–99                                           | 42           |  |
| SMX                  | 54–74.9                                        | 69.0       | <0–99                                           | 69.3         |  |
| SMZ                  | 78.4–96.2                                      | 88.1       | <0–96.2                                         | 77.1         |  |
| TMP                  | 67.7–73.3                                      | 69.1       | <0–99                                           | 57           |  |
| TET                  | 83.3–95.5                                      | 92.4       | 34–97                                           | 86.7         |  |
| MIN                  | 70.1–86.9                                      | 84.7       | Not reported                                    | Not reported |  |
| CTC                  | 84–97.8                                        | 87.9       | Not reported                                    | Not reported |  |
| OXY                  | 89.3–96.3                                      | 93.4       | 80.4–97.9                                       | 90.2         |  |
| TCS                  | 83.8–97.6                                      | 96.4       | <0–100                                          | 92           |  |
| TCC                  | 67.9–93.5                                      | 80.4       | <0–99                                           | 75.4         |  |
| VCM                  | 97.2–99.9                                      | 99.9       | Not reported                                    | Not reported |  |
| САР                  | 98.4–98.8                                      | 98.6       | 11.8–73.8                                       | Not reported |  |


### Comparison of PPCPs Removal with Literature

| Target<br>compound |                   |            | Removal efficiencies reported in the literature |            |  |
|--------------------|-------------------|------------|-------------------------------------------------|------------|--|
|                    | Removal range (%) | Median (%) | Removal range (%)                               | Median (%) |  |
| ACT                | 97.4–98.9         | 97.9       | <0–100                                          | 99         |  |
| ATN                | 83.7–94.6         | 90.5       | <0–97                                           | 67         |  |
| BPA                | 88.3–97.9         | 89.7       | 32–100                                          | 95.2       |  |
| CBZ                | 1.9–7.7           | 3.9        | <0–83                                           | 1          |  |
| CF                 | 100               | 100        | 84–100                                          | 100        |  |
| CTMT               | 6.8–22.1          | 14.4       | 0–70                                            | 50         |  |
| DCF                | -4.7–44.4         | 19.0       | <0–98                                           | 58.5       |  |
| DEET               | 82.1–90.1         | 88.5       | 27–100                                          | 95.3       |  |
| FEP                | 100               | 100        | 100                                             | 99.6       |  |
| GBP                | 76.2–95.6         | 78.8       | 6.4–78                                          | 80         |  |
| GFZ                | 78.5–95.5         | 88.3       | 0–100                                           | 81.3       |  |
| IBP                | 96.7–98.1         | 97.4       | <0–100                                          | 98.2       |  |
| IDM                | 98.3–99           | 98.6       | 7–100                                           | 98.4       |  |
| IOH                | 65.9–79.2         | 71.9       | <0–90                                           | 11.5       |  |
| IOP                | -80.7–53.4        | 38.5       | <0–33.4                                         | 18.7       |  |
| NPX                | 48.3–72.2         | 67.3       | <0–100                                          | 91.5       |  |
| OXB                | 95.6–97.5         | 97.2       | 92.5–97.5                                       | 95.7       |  |
| SA                 | 42.2–95.4         | 75.3       | 12.9–100                                        | 95.7       |  |
| SUL                | 20.6–59.3         | 30.4       | <0–100                                          | 30         |  |

# Relationship between Molecular Features & Removal Efficiencies

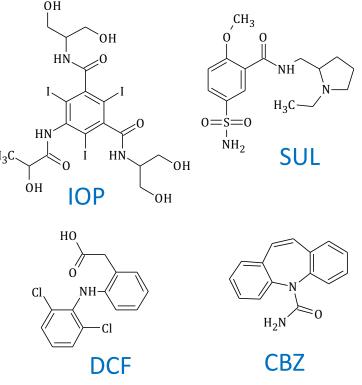
**Excellent removal (>90%)** was observed for ECs with at least one of the following characteristics:

- Log D<sub>ow</sub> > 3.0 (e.g. TCS, and OXB)
- Presence of electron donating groups, such as phenolic (–OH), methoxy (–O– CH<sub>3</sub>), phenoxy (–O–C<sub>6</sub>H<sub>5</sub>), pseudo-peptide group (–NH–CO–R), alkyl and/or phenyl groups, or lactam rings (AMX, MER, ACT, ATN, CF, FEP, and IBP)



• Mainly exist as cations/zwitterions at environmental pH (AMX and ATN).

# Relationship between Molecular Features & Removal Efficiencies


High removal (70–90 %) was frequently observed for:

- 1.0 <Log D<sub>ow</sub> < 3.0.
- Presence of electron donating groups (e.g. BPA and GFZ).
- Exist as cations/zwitterions at env. pH (e.g. AZT, CLAR, CIPX, ERY, TET, MIN, OXY, and TCC).

#### Low removal (< 30 %) was frequently observed

for:

- Log D<sub>ow</sub> < 3.0
- Absence of electron donating groups and/or H<sub>3</sub>C, presence of strong electron withdrawing groups (e.g. CBZ, DCE, IOP and SUL)
- Exist mainly as anions at env. pH (e.g. DCF, IOP)

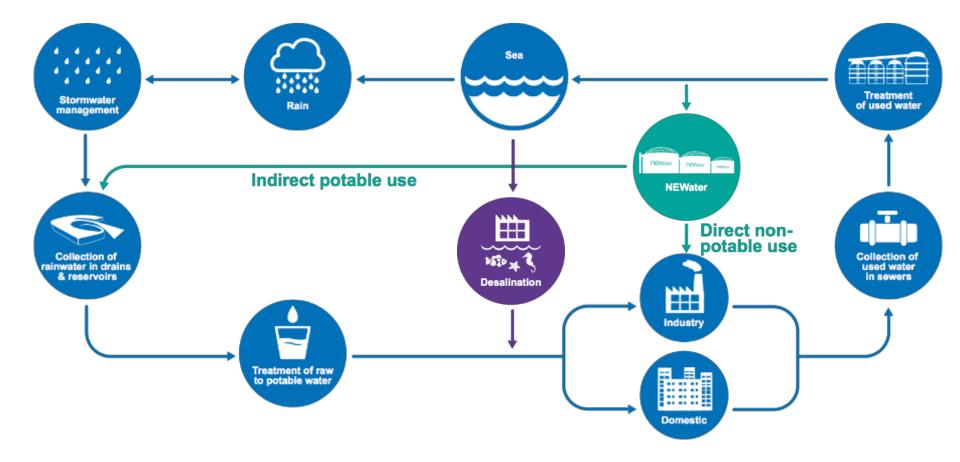


## Conclusions

### **Removal Efficiencies**

- Excellent (>90%): AMX, MER, ACT, ATN, CF, FEP, TCS, OXB
- High (70-90%): TCC, AZT, CLAR, CIPX, ERY, TET, MIN, OXY, BPA, and GFZ.
- Low (<30%): CBZ, CTMT, DCF, IOP, and SUL.

### **Comparison of CAS and MBR**


• MBR more stable, higher removal efficiencies

### Mechanisms

- Enhanced removal: electron-donating groups/cations
- Poor removal: electron- withdrawing groups/anions

## PUB's Approach on the Issue of Micropollutants/ Emerging Contaminants (ECs)

### **PUB** manages the complete water cycle



### **CHALLENGES WITH ECs**

- There are thousands of pharmaceutical and personal care products which are used on day to day basis.
- Most of them ends up in the wastewater.
- Depending on the demographic and changing disease spectrum their consumption changes.
- It varies to population to population, country to country.
- There is no single water treatment process which can remove all the ECs at one go.

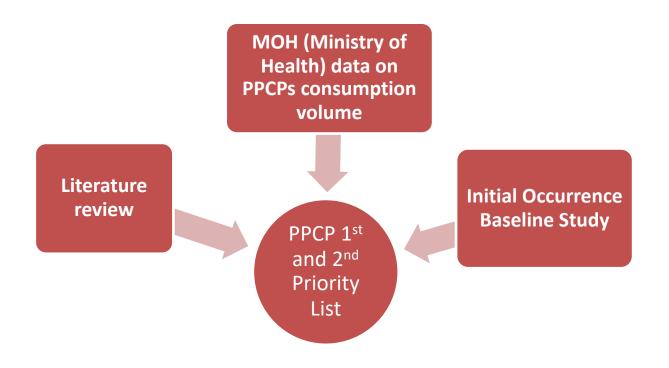
## **ARE ECs REALY A CONCERN?**

- More ECs are detected today due to the increasingly sensitive analytical technology that allows identification and quantification of minute concentrations.
- The highest concentration of any pharmaceutical detected in U.S. drinking water is approximately 5,000,000 times lower than the therapeutic dose, which is orders of magnitude lower than the level that would pose a public health threat.
  - ✓ Dr. Shane Snyder's comments, while briefing United States Senate Subcommittee on Transportation Safety, Infrastructure Security and Water Quality on 15 Apr 2008.
- Decisions or regulations should be made based on protection of public health and not the ability to find contaminants.

### **ARE ECs REALY A CONCERN?**

- The 2011 World Health Organization (WHO) report on Pharmaceuticals in Drinking Water concluded that development of formal health-based guideline values for pharmaceuticals in drinking water is not necessary.
  - $\checkmark$  The report assessed that if pharmaceuticals do present in drinking water, the concentrations are well below 50 ng/L (part per trillion) which are several orders of magnitude (more than 1000-fold) below the minimum therapeutic dose and largely below the acceptable daily intake (ADI) with respect to health impact. The substantial margin of safety for these individual compounds suggests that impacts on human health are very unlikely at current levels of exposure in drinking water for countries with pharmaceuticals detected in the water supplies.

## **STATE OF AFFAIRS OF ECs IN SINGAPORE - 1**


- > PUB has been monitoring ECs in water since 2008.
- To include ECs in monitoring regime, ECs are prioritized based on local consumption, detection, treatability, toxicity etc.
- PUB priority list based on 5 criteria based on literature information, local consumption data and initial baseline occurrence study.
- The local consumption changes due to demographic and disease spectrum changes with time. Hence, a periodic review of the local consumption data carried out every year.
- PUB priority list is reviewed every year to check if there is any changes in the base criteria.

## **6 CRITERIA FOR PRIORITIZING ECs**

| S/N | Criterion                    | Reasoning                                                                                                                                                                                                                                                                                              |
|-----|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | Consumption                  | Consumption is directly related to the probability of occurrence in environment, as long as there is no special mechanism of elimination during the process.                                                                                                                                           |
| 2.  | Regulation                   | Wastewater Utilities and drinking water supplies are obliged to fulfil any regulation. Most of the PPCPs are unregulated.                                                                                                                                                                              |
| 3.  | Physicochemical properties   | Physiochemical properties (such as polarity, water solubility,<br>chemical reactivity) determine the behaviour of the PPCP in<br>the environment as well as during drinking water/<br>wastewater treatment (based on sorption, degradation etc.).<br>Thus contribute significantly while prioritizing. |
| 4.  | Human toxicity/ Eco-toxicity | Toxicological data reveals the impact human and environment.                                                                                                                                                                                                                                           |
| 5.  | Degradability/ Persistence   | Degradation of a compound during wastewater treatment or<br>in environment can significantly decrease environmental<br>relevance of the compound.                                                                                                                                                      |
| 6.  | Resistance to Treatment      | PPCPs are difficult to remove during water treatment<br>processes are of high relevance. Henceforth resistance to<br>treatment (drinking / wastewater treatment) is very relevant.                                                                                                                     |

Ref: Development of an International Priority List of Pharmaceuticals relevant for the Water cycle, GWRC, **2008** 

### **PUB'S PRIORITY LIST**



### **DECIDING FACTORS FOR PRIORITY LIST**

#### Basis for of the PPCP's in 1<sup>st</sup> priority list

- Analgesics (Acetaminophen, Salicylic acid, Ketoprofen, Diclofenac, Ibuprofen, Naproxen) were infrequently detected (in low ppt) in our urban waters. They are also highly consumed in Singapore. Some of them are over the counter drugs.
- Gemfibrozil (lipid lowering agent), Carbamazepine (anti epileptic drug) and Trimethoprim (antibiotic drug) are detected in our wastewaters (high ppt). They are among the highly consumed drugs in Singapore.
- DEET (N,N' Diethyl-meta-toluamide) has been reported to be present worldwide at trace levels.
- Though EDCs are not detected in any of our waters, they are selected based on their high endocrine disrupting impact on the marine ecosystem.

### **DECIDING FACTORS FOR PRIORITY LIST**

- **Basis for of the PPCP's in 2<sup>nd</sup> priority list**
- Compounds which were sometimes detected in our waste waters (initial occurrence baseline study) and were reported to be top consumed drugs in Singapore.
- Artificial sweeteners were listed in a separate category as tracers.

## **PUB'S PRIORITY LIST**

| Top Priority (Routine<br>Monitoring in SAMP) | 2 <sup>nd</sup> Priority List |                   | Chemical Tracers<br>(Routine<br>Monitoring in<br>SAMP) |
|----------------------------------------------|-------------------------------|-------------------|--------------------------------------------------------|
| Diclofenac                                   | Norfloxacin                   | Demethyl Diazepam | Acesulfame                                             |
| Gemfibrozil                                  | Erythromycin                  | Diazepam          | Aspartame                                              |
| Ibuprofen                                    | Atenolol                      | Furosemide        | Cyclamate                                              |
| Naproxen                                     | Bezafibrate                   | Oleandomycin      | Saccharin                                              |
| Ketoprofen                                   | Amoxycillin                   | Oxytetracycline   | Sucralose                                              |
| Acetaminophen                                | Clarithromycin                | Tilmicosin        |                                                        |
| Salicylic Acid                               | Cyclophosphamide              | Tylosin           |                                                        |
| Carbamazepine                                | Clofibric Acid                | Simvastatin       |                                                        |
| 17α- Ethinylestradiol                        | Hydrochlorothiazide           | Clotrimazole      |                                                        |
| 17β- Estradiol                               | Lincomycin                    | Enalapril         |                                                        |
| Estrone                                      | Ofloxacin                     | Fluoxetine        |                                                        |
| DEET                                         | Sulfamethoxazole              | Salbutamol        |                                                        |
| Bisphenol A                                  | Trimethoprim                  |                   |                                                        |

### **ECs MANAGEMENT IN SINGAPORE**

- Island wide sewer rehabilitation programme has been completed
  - ✓ Significantly reduces Point Source contamination from sewer leaks
- Anthropogenic contamination cannot be completely eliminated
  - ✓ Most of the PUB's water treatment plants are equipped with Ozone/BAC treatment process or in the process of upgrading
  - New treatment process like Advanced Oxidation Processes (AOP) are rigorously tested in pilot plants, which if required will be implemented in future

## **STATE OF AFFAIRS OF ECs IN SINGAPORE - 2**

- Most ECs are not detected in Singapore Waters. If detected they are the concentrations were minute in part per trillion (ng/L) levels, which are many orders of magnitude lower than the guidelines values (Reference: Australian Drinking Water Guideline Values, 2008)
- Used water in Singapore is discharged into sewers and there is a clear segregation of surface storm water drainage and sewerage system.
- The treated used water effluent is either discharged directly into the surrounding sea or delivered to NEWater factories at which the reverse osmosis process would effectively remove the ECs. Similarly, ECs would also be removed by the reverse osmosis process of the seawater desalination plants.

### CONCLUSION

- ECs are not a concern in Singapore waters.
- An efficient monitoring regime has been put in place for detection and analysis of ECs in Singapore waters.
- Water Quality Department in PUB is equipped with latest instruments for detection and analysis of ECs.
- PUB periodically updates its EC priority list based on latest consumption data.
- AOPs are tested for treatment and removal of ECs in water, for future concern, if any.

## **Thank You**



MESSING.

an in