

Title: Pilot test WWTP Aarle-Rixtel

Subtitle: Comparison of O₃ and UV/H₂O₂

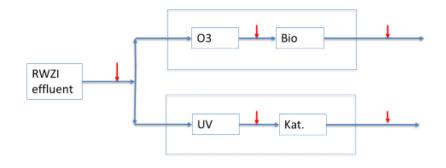
Waterboard Aa en Maas Maarten Nederlof Robert Kras

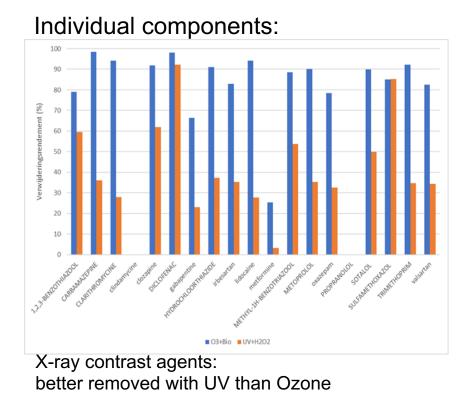
Dutch Innovation on Micropollutants Removal from Municipal Wastewater November 7th 2019 Aquatech Amsterdam

Oxidative Technologies

- Oxidative technologies
 - ➢ O3 + Bioreactor
 - ➢ UV + H2O2

Reactions: oxidation, radicals Reactions: radicals, fotolyse, (oxidation)

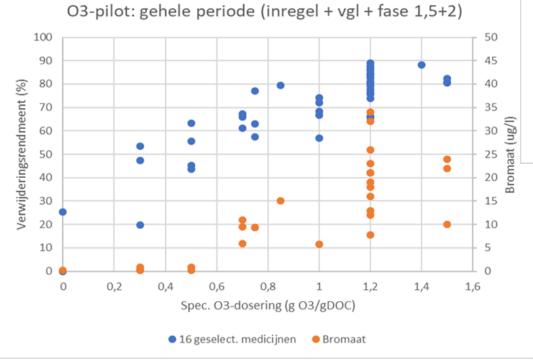

- <u>Comparison parameters</u>
 - Removal efficiency
 - 80% (16 medicines, compared to **EF**fluent)
 - 70% (7 of the 11 guiding compounds, compared to **IN**fluent)
 - Costs, energy, chemicals, metabolites....

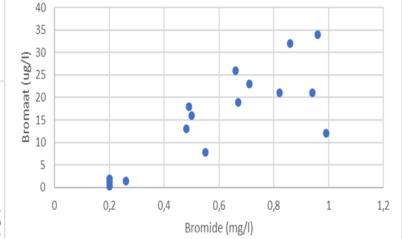


Pilot Study

UV+H2O2 is "non-proven technology" for WWTP-effluent

Removal Efficiency (%)	Aim	UV+H ₂ O ₂	O ₃ +Bio
16 medicines, Compared to ef fluent	80	41	86
7 of the 11 guiding comps,	00		
Compared to <u>in</u> fluent	70	84	94
Points for attention		Energy	Bromate

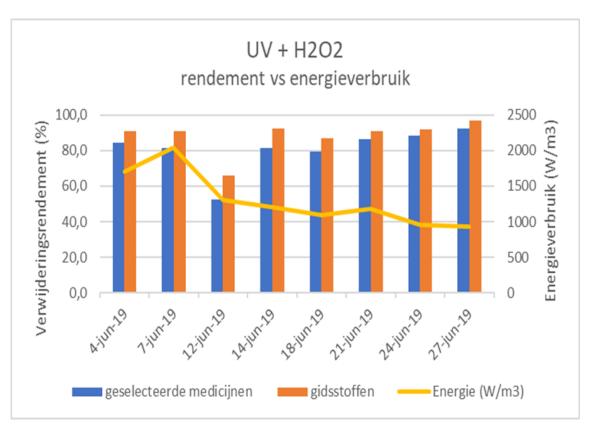



Pilot Study

Ozone technology: \rightarrow Bromate (avg 19 ug/l, vs 1 ug/l drinking water standard)

- High Br- in waste water (industrial waste water)
- Relative high O3-dosis

Bromaatproductie vs Bromidegehalte bij 1,2 g O3/ g DOC



Pilot Study

 $UV+H_2O_2$: Energy consumption

(UV-lamps: 1 kW/m3 @ 41% removal efficiency comp. to effl)

Cause: low UV-transmittance of waste water

Pre-treatment: sand filter + coagulant

UV-transmission: $40 \rightarrow 60\%$

It helps, but...

..... E-consumption is still high

(UV-lamps: 1 kW/m3 @ 80% removal efficiency comp. to effl)

Results

Criterium	UV+H2O2	O3+Bio
Removal of micropollutants	++	++
CO2 footprint		0
Costs		0
Ecotoxicity	+	+
Microplastics	?	?
Antibiotic resistance	?	?

Further research

Conclusion for wwtp Aarle-Rixtel:

- \triangleright O₃ more attractive technology than UV+H₂O₂
- Point of attention: Bromate

Recommendation: first Demo scale, then full scale

Investigate in Demo:

- Reduction/ prevention of BrO3 (drinking water)
- Combination with nutrient removal
- Ecotoxicity (effect on surface water)
- Efficiency (value for money?)

-

Thank you for your attention!

Maarten Nederlof, Robert Kras Waterboard Aa and Maas rkras@aaenmaas.nl

Dutch Innovation on Micropollutants Removal from Municipal Wastewater November 7th 2019 Aquatech Amsterdam