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Abstract 

STOWA heeft het initiatief genomen om samen met een aantal partijen een 

klimaatrobuuste Waterwijzer Natuur (WWN) te ontwikkelen. Een instrument dat de 

effecten van klimaatverandering en het waterbeheer op de terrestrische vegetatie van 

natuurgebieden dient te kunnen berekenen. Klimaatverandering zal vooral gevolgen voor 

natuurlijke vegetaties hebben via veranderingen in de waterbalans. Die veranderingen 

werken namelijk door op de bodemtemperatuur en de hoeveelheid vocht, zuurstof en 

nutriënten die voor de planten in het wortelmilieu beschikbaar zijn. Klimaatverandering 

noopt dan ook tot het stellen van enkele essentiële vragen, zoals:  

 Welke maatregelen zijn er nodig om natuurdoelen in de toekomst zeker te stellen? 

 Welke alternatieve doelen kunnen we overwegen als in het verleden vastgestelde 

natuurdoelen niet meer haalbaar blijken te zijn onder een veranderend klimaat?  

 Waar liggen straks, in het klimaat van de toekomst, de beste kansen voor het 

creëren van hotspots van biodiversiteit?  

Dit rapport geeft een overzicht van de overeenkomsten en verschillen van de wijze waarop  

PROBE (KWR) en VSD+ (WEnR) de nutriëntenbeschikbaarheid en zuurgraad in (half)natuurlijke 

terrestrische ecosystemen voorspellen in afhankelijkheid van milieu, (vnl. atmosferische 

depositie), klimaat (vnl. temperatuur en neerslag) en waterbeheerscenario’s. 

De belangrijkste conclusies zijn: 

 PROBE is sterk in de berekening van stikstofbeschikbaarheid en hanteert een meer 

procesmatige aanpak dan VSD+ om de effecten van bepaalde milieufactoren te 

modelleren. Verder bieden de fijne ruimtelijke en temporele resoluties van dit model 

de mogelijkheid om seizoeneffecten, de invloed van regenwaterlenzen, 

weersextremen en beheersmaatregelen op een procesmatige basis mee te nemen, 

wat vooral voor de bodem-pH in natte gebieden van belang is. De pH module van 

PROBE is echter niet robuust voor alle vegetatie-bodem combinaties en dient te 

worden verbeterd of aangepast. 

 VSD+ is sterk in de berekening van zuurgraad (pH), omdat het een volledige 

ionenbalans bevat op basis waarvan het effect van alle mogelijke zuur-producerende 

en zuur-bufferende processen op de pH wordt meegenomen. Het model is echter 

zwak in natte systemen omdat redoxprocessen niet zijn meegenomen. Dit zou 

moeten worden toegevoegd met het oog op toepasbaarheid in natte systemen.  

 In beide modellen is de fosfaatbeschikbaarheid nog niet goed ingebracht. Dit kan  

essentieel zijn voor een goede voorspelling van effecten van maatregelen 

Daarnaast geeft dit rapport een overzicht van de belangrijkste datasets die aanwezig zijn 

voor het parametriseren en valideren van beide modellen. 
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Uitgebreide samenvatting 

S1 Inleiding 

Waterbeheerders hebben als taak op een verantwoorde wijze om te gaan met de beschikbare 

hoeveelheid water van de juiste kwaliteit. Om dat goed te kunnen doen is kennis nodig over 

de waterverdeling op verschillende ruimtelijke schaalniveaus, variërend van een enkel 

perceel tot het gehele land. Bovendien dienen waterbeheerders inzicht te hebben in de 

gevolgen van het door hen gevoerde beheer. In het landelijk gebied zijn het vooral de 

landbouw, de natuur en de drinkwaterbedrijven die hiervan afhankelijk zijn. 

De beoordeling van gevolgen voor de landbouw gebeurde tot nu toe met instrumenten, zoals 

de HELP-tabellen, die zijn gebaseerd op inmiddels verouderde kennis en die ongeschikt zijn 

voor klimaatprojecties. STOWA heeft daarom het initiatief genomen om samen met een 

aantal partijen een klimaatrobuuste beoordelingssystematiek voor de landbouw te laten 

ontwikkelen. Daarnaast heeft STOWA het initiatief genomen om ook een Waterwijzer Natuur 

(WWN) te ontwikkelen. Een instrument dat de effecten van klimaatverandering en het 

waterbeheer op de terrestrische vegetatie van natuurgebieden dient te kunnen berekenen. In 

beide waterwijzers zijn processen die door klimaatverandering worden beïnvloed zo goed 

mogelijk nagebootst. Door deze procesbenadering zijn ze ook geschikt voor 

klimaatprojecties en extreme weercondities, in tegenstelling tot instrumenten die vooral 

gebaseerd zijn op empirische relaties ontleend aan het recente klimaat en 

deskundigenoordeel. 

De ontwikkeling van de WWN is opgenomen in de Landelijke Kennisagenda Zoetwater die 

door het Bestuurlijk Platform Zoetwater is vastgesteld. Samen met de Waterwijzer Landbouw 

kan de WWN worden beschouwd als een belangrijk instrument voor de onderbouwing van 

een Deltaplan Zoetwater fase 2 (2022 – 2027). De ambtelijke IPO-vertegenwoordigers in het 

Deltaplan Zoetwater hebben aangegeven dat de provincies een logische partij vormen om de 

ontwikkeling van de WWN mogelijk te maken. Dit onderzoek is daar het gevolg van. 

In Nederland is natuur ruimtelijk gepland: er zijn voor alle natuurterreinen doelen 

vastgesteld. Vaak zijn die natuurdoelen wettelijk vastgelegd, bijvoorbeeld in Europees 

verband (Habitatrichtlijn/Natura 2000, Kaderrichtlijn Water). Verschillende organisatie 

hebben hierbij hun taken en verantwoordelijkheden. Provincies zijn verantwoordelijk voor 

natuurbehoud en –ontwikkeling (het Nationaal Natuurnetwerk, voorheen EHS). Hydrologische 

voorwaarden creëren is daarvoor een belangrijke maatregel. Waterschappen geven uitvoering 

aan hydrologische herstelmaatregelen. 

Het klimaat van Nederland verandert echter, en dat heeft consequenties voor de 

haalbaarheid van natuurdoelen, zoals de PBL-studie ‘effecten van klimaatverandering in 

Nederland: 2012’ laat zien. Klimaatverandering zal vooral gevolgen voor natuurlijke 

vegetaties hebben via veranderingen in de waterbalans. Die veranderingen werken namelijk 

door op de bodemtemperatuur en de hoeveelheid vocht, zuurstof en nutriënten die voor de 

planten in het wortelmilieu beschikbaar zijn. Klimaatverandering noopt dan ook tot het 

stellen van enkele essentiële vragen, zoals:  
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 Welke maatregelen zijn er nodig om natuurdoelen in de toekomst zeker te stellen? 

 Welke alternatieve doelen kunnen we overwegen als in het verleden vastgestelde 

natuurdoelen niet meer haalbaar blijken te zijn onder een veranderd klimaat?  

 Waar liggen straks, in het klimaat van de toekomst, de beste kansen voor het creëren 

van hotspots van biodiversiteit?  

Op dit moment ontbreekt het de waterbeheerder en beleidsmaker aan een praktisch 

instrument om dergelijke vragen te beantwoorden. Het gebrek hieraan kan leiden tot een 

beleid en beheer dat onvoldoende is afgestemd op de natuur, en op een navenant 

suboptimale besteding van middelen voor de natuur. Het is relevant voor zowel de overheid 

als voor gebiedspartijen om te weten of een investering in de natuur langdurig resultaat 

oplevert, of dat er op termijn een nieuwe investering nodig zal zijn. 

Daarom hebben STOWA, het Ministerie van EZ, Rijkswaterstaat-WVL en de stichting Kennis 

voor Klimaat door drie onderzoeksinstituten een verkennend onderzoek laten verrichten 

waarin verschillende modelconcepten met elkaar werden vergeleken. Eén van de conclusies 

uit dit onderzoek komt erop neer dat bestaande computermodellen niet geschikt zijn voor 

klimaatprojecties, omdat ze zijn gebaseerd op indirecte relaties tussen standplaats en 

vegetatie die bovendien ontleend zijn aan het klimaat van de vorige eeuw. Dat geldt 

bijvoorbeeld voor het in nationale beleidsstudies gebruikte model DEMNAT, waarmee alleen 

voor het huidige klimaat kan worden beoordeeld hoe per vierkante kilometer de relatieve 

soortenrijkdom van een 18-tal ecosysteemtypen verandert wanneer de waterstand daalt of 

stijgt. Met hogere temperaturen, een langer groeiseizoen, meer extreme neerslagbuien, 

afgewisseld door langdurige perioden van droogte, kunnen deze modellen niet omgaan. 

Daarnaast werd gesignaleerd dat het modelleren van de zuurgraad en nutriëntenstatus van 

de bodem de zwakste schakel is bij het modelleren van effecten op de vegetatie.  

Op basis van deze bevindingen zijn de volgende vervolgstappen voorgesteld: 

 Gebruik het model PROBE als basis voor de ontwikkeling van de WWN. 

 Besteed vooral aandacht aan de zwakste modelonderdelen: de berekening van de 

zuurgraad en nutriëntenstatus van de bodem. 

 Zorg voor een gebruiksvriendelijke toepassing/schil. 

Dit onderzoek gaat in op het tweede punt. Financiers en andere betrokken partijen bij het 

onderzoek zijn:  

 STOWA 

 Deltaprogramma Zoetwater (Ministerie van Infrastructuur en Milieu) 

 Ministerie van Economische Zaken 

 Planbureau voor de Leefomgeving 

 Provincies Gelderland, Utrecht en Noord-Brabant 

 Waterschap Aa & Maas en Waterschap Vechtstromen 

 Kennisprogramma Lumbricus 

 Natuurmonumenten en Staatsbosbeheer 

 KWR en WEnR 

Mondiaal gezien zijn er behoorlijk wat modellen in omloop waarmee de zuur- en 

nutriëntendynamiek gemodelleerd kunnen worden. In deze analyse beperken wij ons echter 

tot twee modellen waarmee met name in Nederland ervaring is opgedaan. Het gaat hierbij 

om de modelversies van PROBE (bestaande uit de modellen SWAP, CENTURY en ORCHESTRA) 
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ontwikkeld door het KWR en het VSD+ model, gekoppeld aan GrowUp en SUMO, ontwikkeld 

door WEnR (hierna genoemd VSD+). 

S2 Resultaten 

In grote lijnen zijn de modellen PROBE en VSD+ vergelijkbaar. Beide modellen hebben als 

doel standplaatsfactoren, zoals vochtgehalte, zuurgraad en nutriëntenbeschikbaarheid in 

(half)natuurlijke terrestrische ecosystemen te voorspellen in afhankelijkheid van milieu (vnl. 

atmosferische depositie), klimaat (vnl. temperatuur en neerslag) en waterbeheerscenario’s. 

Het belangrijkste verschil tussen beide modellen is dat het model VSD+ qua 

procesformulering eenvoudiger en minder gedetailleerd is dan het model PROBE.  

S2.1 Modelvergelijking 

Structuur 

In onderstaande figuur is een overzicht gegeven van de structuur en de relaties tussen de 

onderliggende modules van beide modellen. 

Zo worden, om de rekensnelheid te verhogen,  in PROBE-2.1 (Witte et al., 2015) de 

standplaatsfactoren berekend met metarelatiesdie zijn afgeleid van het agrohydrologische 

model SWAP (voor bodemvocht) en het bodemmodel uit CENTURY (voor N beschikbaarheid). 

In PROBE-2.2 (Cirkel et al., 2016a) is de bodem-pH als factor toegevoegd door koppeling met 

het bodemchemische model ORCHESTRA in combinatie met het hydrologische model SWAP. 

Ten slotte zijn in PROBE-3 (Fujita et al., 2016) het model SWAP, CENTURY-bodemmodule en 

de CENTURY-plantmodule dynamisch gekoppeld om zowel het bodemvocht als de 

N-beschikbaarheid te berekenen. In PROBE-3 wordt de pH echter niet dynamisch berekend, 

maar benaderd op basis van empirische relaties gebaseerd op Aggenbach et al. (2013a) en 

Stuyfzand (2010). PROBE-2.1 is toegepast voor de natte natuur in twee beekdalen de ‘Baakse 

Beek’ (Witte et al., 2015) en de ‘Tungelrooyse Beek’ (Van der Knaap et al., 2015; Van der 

Knaap et al., submitted), terwijl PROBE-3 toegepast is op kustduinen en een landbouwgewas 

(Fujita et al., 2016). Om de verschillende modelversies op nationale schaal te kunnen 

toepassen zijn reprofuncties afgeleid voor diverse Nederlandse bodemtypes. Voor versies 

2.2 en 3 is dat maar ten dele gelukt. PROBE-2.1 heeft een gebruikersvriendelijk userinterface, 

wat wordt beschouwd als een prototype van de WWN. Via de interface kunnen gebruikers 

diverse klimaat- en hydrologie-scenario’s selecteren voor toepassing op landschapsschaal, 

waarbij gebruik gemaakt wordt van ruimtelijk expliciete geografische informatie op 25 m × 

25 m resolutie. PROBE-3, daarentegen, is voorzien van eenvoudige userinterface die is 

bedoeld voor toepassingen op standplaatsniveau.  

In dit rapport richten we ons op de combinatie PROBE-3 (voor dynamische hydrologie en N 

beschikbaarheid en relatie met de vegetatie) en PROBE-2.2 (voor dynamische pH). In 

Figuur S1 is de onderlinge relatie tussen de modules aangegeven. Als tijdstap wordt een dag 

gehanteerd en de eendimensionale ruimtelijke schaal bestaat uit bodemlaagjes van 1 cm. De 

totale gemodelleerde bodemlaag bestrijkt 6 m en de tijdhorizon 1 jaar tot enkele decennia.  

Het VSD
+

 model (Bonten et al., 2016) berekent zowel de dynamiek als de 

bodemvochtconcentratie van SO
4

, PO
4

, Ca, Mg, K, Na, Cl, NO
3

 en NH
4

 de C/N ratio en de pH. 

Dit maakt het model geschikt voor het aanleveren van de benodigde standplaatsfactoren ten 

behoeve van plantendiversiteit modellen, zoals de vegetatiemodule van PROBE.  
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Het VSD
+

 model bestaat uit één bodemcompartiment en rekent standaard met een tijdstap 

van 1 jaar. Het model berekent zowel de pH als de C- en N-dynamiek en is met name 

bedoeld voor toepassingen op regionale schaal. Het model bevat alle belangrijke 

zuurproducerende en zuurneutraliserende processen zoals mineraalverwering, 

kationenomwisseling, (de)nitrificatie, nutriëntopname en mineralisatie. De pH wordt 

berekend uit de ladingsbalans in de bodemoplossing. Voor de dynamiek van C- en N-pools in 

organische stof wordt gebruik gemaakt van het model RothC (Coleman & Jenkinson, 2014). 

Het RothC is volledig geïntegreerd met het VSD+ model. De jaarlijkse interacties tussen de 

bodem-pH enerzijds en mineralisatie en (de)nitrificatie anderzijds, zijn beschreven middels 

reductiefuncties. 

Voor de waterbalans maakt het model gebruik van de invoer van een hydrologisch model. Dit 

kan ieder gewenst model zijn, bijv. SWAP. Dit geldt ook voor de relatie met de vegetatie. Bij 

VSD+-toepassing wordt veelal gebruik gemaakt van het model GrowUp. Deze module 

simuleert planten(bos)groei, strooiselproductie en nutriëntopname. Daarnaast wordt gebruik 

gemaakt van het vegetatie-successiemodel SUMO, waardoor het mogelijk is effecten van 

vegetatiebeheer (zoals begrazen, maaien, afplaggen) te simuleren. Zie Figuur S1 voor de 

onderlinge relatie tussen de modules. 

Het model heeft slechts een beperkte hoeveelheid aan input nodig, omdat veel gegevens 

reeds aanwezig zijn. Dit geldt voor geheel Nederland. De rekentijd van het model is 

minimaal (< 1 minuut bij toepassing voor geheel Nederland op een 250m × 250m resolutie). 

Het model is voorzien van een gebruiksvriendelijke grafische user interface (GUI). Deze GUI 

stelt de gebruiker eenvoudig in staat om zowel (Bayesian) kalibraties uit te voeren als 

scenario’s door te rekenen. 

FIGUUR S1 RELATIE TUSSEN DE DIVERSE MODULES (PLANT, BODEMORGANISCHE STOF, HYDROLOGIE EN 

CHEMIE) IN PROBE (BOVEN) EN VSD+-(ONDER). 

 

VSD+

Growth model
(GrowUp)
(SUMO)

Hydrological 
model

Percolation

Plant uptake
Incl. management

Soil Organic model (RothC):
C, N

Soil chemistry:
NO3, NH4, H2PO4, K, Ca, Mg, 

Na, SO4, Cl, pH

N mineralisation 

Litter input
Incl. management

Deposition
Weathering
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Reductie-functies 

Naast een vergelijk op hoofdlijnen, zoals type processen en mate van detail is er ook een 

gedetailleerde vergelijking uitgevoerd van de functies waarmee het verband tussen de 

abiotische factoren, zoals bodemvocht, temperatuur, textuur, pH, CN-ratio en N-

beschikbaarheid enerzijds en mineralisatie, (de)nitrificatie, groei, en N-gehalte van de 

vegetatie anderzijds. 

In veel gevallen zijn de reductiefuncties, zoals gebruikt in beide modellen, vergelijkbaar. Zie 

bijv. Figuur S2 waarin de gehanteerde reductiefuncties voor de relatie vocht-denitrificatie 

worden getoond. Sommige reductie functies zijn slechts in één van beide modellen 

opgenomen, bijvoorbeeld voor het effect van bodemvocht op plantensterfte en het pH-effect 

op denitrificatie (zie Figuur S3).  

FIGUUR S2 EFFECT VAN VOCHT OP DENITRIFICATIE IN PROBE EN VSD+ VOOR ZAND (‘BOUWSTEEN’ B1), 

KLEI (‘BOUWSTEEN’ B11) EN VEEN (‘BOUWSTEEN’ B15). 

 

 

 
 

Indien daar aanleiding toe is zijn de reductiefuncties vrij eenvoudig aan te passen en 

ontbrekende relaties vrij eenvoudig toe te voegen. Dit vereist geen ingrijpende wijzigingen in 

de modelstructuur. Een lastig punt hierbij is overigens, dat het niet altijd mogelijk is om een 

objectieve keuze te maken op een reductiefunctie door het ontbreken van de juiste 

proceskennis. 

Er zijn echter ook relaties in beide modellen die in sterke mate van elkaar verschillen, zoals 

het effect van de CN-ratio van organische stof op de N-beschikbaarheid en het effect van pH 

op (de)nitificatie (zie figuur S3).  
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FIGUUR S3 EFFECT VAN PH OP NITRIFICATIE IN CENTURY EN VSD+ (LINKS) EN OP DENITRIFICATIE IN VSD+ 

(RECHTS). 

  

 

Definities van nutriëntenbeschikbaarheid in relatie tot vegetatie-effecten 

Naast de rol van N speelt ook fosfor (P) een belangrijke rol. Wij zijn dan ook van mening dat 

voor het modelleren van nutriëntenbeschikbaarheid niet alleen de N-beschikbaarheid, maar 

ook de P-beschikbaarheid dient te worden beschouwd. 

Vanuit het oogpunt van de vegetatie nemen we aan dat de mineralisatiesnelheid van N en/of 

P een representatievere benadering voor de nutriëntenbeschikbaarheid is dan de totaal 

gehaltes of extraheerbare hoeveelheden N en/of P in de bodem. Een mineralisatieflux betreft 

immers de resultante van de beschikbare hoeveelheid N en/of P en de mate waarin deze 

vrijkomt in afhankelijkheid van omgevingsfactoren zoals temperatuur en vocht. Dit wordt 

ondersteund door onderzoek van Fujita et al. (2013). Daarom wordt voorgesteld om 

vooralsnog uit te gaan van de netto mineralisatieflux als maat voor de voedselrijkdom van de 

bodem. Echter, naast de netto mineralisatie is met name ook de toevoer van N via 

atmosferische depositie, grondwaterstroming en via N-fixatie door bodemorganismen van 

belang, maar ook de afvoer als gevolg van denitrificatie. In geval van P is daarnaast ook de 

toevoer via verwering (en mogelijk via sorptie) en de eventuele aanvoer via kwelwater van 

belang. Dit resulteert in de volgende werkdefinities van N- en P-beschikbaarheid: 

N-beschikbaarheid = netto N mineralisatie + atmosferische N depositie + N-fixatie – 

denitrificatie + N-kwelwater 

P-beschikbaarheid = netto P mineralisatie + atmosferische P depositie + P sorptie + P 

verwering + P-kwelwater 

We hebben een aantal datasets geselecteerd aan de hand waarvan de modellen nader getest 

en met elkaar kunnen worden vergeleken en gevalideerd. In totaal zijn negen datasets 

geselecteerd die gebruikt kunnen worden voor de parametrisatie op landelijke schaal. Met 

het oog op validatie zijn tien monitoringreeksen geïnventariseerd, waarvan er een viertal 

geschikt lijkt om te worden gebruikt voor het uitvoeren van een modelvergelijking en 

validatie. Een manco is wel dat het merendeel van deze datasets zich richt op de drogere 

terrestrische ecosystemen, waardoor de nattere en anoxische systemen onvoldoende zijn 

vertegenwoordigd. 
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S2.2 Sterke en zwakke punten van beide modellen 

Op basis van de uitgevoerde modelvergelijking komen we tot de volgende sterke en zwakke 

punten: 

Sterke punten PROBE 

 Een procesmatige en consistente beschrijving van nutriëntenlimitatie en het effect van 

C:N:P stoichiometrie op plantengroei en mineralisatie. 

 Dynamische terugkoppeling tussen plant, bodem en hydrologie. 

 Expliciete modellering van het effect van de pH beïnvloeding via grondwater.  

 Meerlagenmodel, waardoor het mogelijk is om de verticale gradiënt in bodemchemie en 

bodemvochtconcentratie te modelleren.  

 Bovendien een kleine rekentijdstap waardoor seizoeneffecten, de invloed van 

regenwaterlenzen, weersextremen en beheersmaatregelen kunnen worden meegenomen.  

 

Zwakke punten PROBE 

 Vrij complex en vraagt om veel input data. 

 Lange rekentijden. 

 pH module is niet gekoppeld met de bodemorganische-stofmodule. 

Sterke punten VSD+ 

 Relatief eenvoudig en vraagt om relatief weinig input data. 

 Bevat alle macro-ionen (volledig ladingsbalans). 

 Dynamische interactie tussen pH en biochemische processen. 

 In combinatie met SUMO is het mogelijk om interacties tussen bodem en vegetatiegroei 

en de effecten van vegetatiebeheer zoals plaggen en maaien te simuleren. 

 Rekent snel. 

 Eenvoudig toe te passen als gevolg van relatie met de nationale databases en 

gebruiksvriendelijke user interface. 

Zwakke punten VSD+ 

 Hanteert een constante C:N ratio voor iedere organische-stofpool. 

 Bevat geen P-mineralisatie en chemische interactie is beperkt tot direct P sorptie 

evenwicht met een labiele P pool.  

 Combinatie met SUMO is niet gevalideerd en vraagt om vrij veel aanvullende input data. 

 Seizoeneffecten zijn niet expliciet mee te nemen als gevolg van een jaarlijkse tijdstap. 

 Bevat geen redoxprocessen. 

S3 Conclusies en aanbevelingen 

S3.1 Conclusies 

 PROBE is sterk in de berekening van stikstofbeschikbaarheid en hanteert een meer 

procesmatige aanpak dan VSD+ om de effecten van bepaalde milieufactoren te 

modelleren. Verder biedt de kleine rekentijdstap en opdeling in vele bodemlaagjes de 

mogelijkheid om seizoeneffecten, de invloed van regenwaterlenzen, weersextremen en 

beheersmaatregelen op een procesmatige basis mee te nemen, wat vooral voor de 

bodem-pH in natte gebieden van belang is. De pH module van PROBE is echter niet 

robuust voor alle vegetatie-bodem-combinaties en dient te worden verbeterd of 

aangepast. 

 VSD+ is sterk in de berekening van zuurgraad (pH) omdat het een volledige ionenbalans 

bevat op basis waarvan het effect van alle mogelijke zuur-producerende en zuur-
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bufferende processen op de pH wordt meegenomen. Het model is echter zwak in natte 

systemen omdat redox-processen niet zijn meegenomen. Dit zou moeten worden 

toegevoegd met het oog op toepasbaarheid in nattere systemen. 

 In beide modellen is de fosfaatbeschikbaarheid nog niet goed ingebracht. Dit kan 

essentieel zijn voor een goede voorspelling van effecten van maatregelen.  

 Om objectief vast te kunnen stellen wat de optimale balans is in de mate van 

modeldetail en mate van interactie tussen de processen, dienen beide modellen te 

worden toegepast op één of meerdere van de geselecteerde datasets. Dit zal in fase 2 

worden uitgevoerd. 

S3.1 Aanvelingen 

 Zuurgraad: verbeter de beschrijving van de kationomwisseling en daarmee de relatie pH-

basenverzadiging die essentieel is voor de voorspelling van de zuurgraad in het pH 

traject van 4.5-6.5. Bovendien dient beter rekening te worden gehouden met de invloed 

van kwelwater. 

 N-beschikbaarheid: verbeter de onderbouwing van de relaties tussen de 

stikstoftransformaties (mineralisatie, nitrificatie en denitrificatie) in afhankelijkheid van 

het vochtgehalte en de zuurgraad (pH). Deze zijn essentieel voor een robuuste 

voorspelling van N-beschikbaarheid en de NO
3

-uitspoeling. 

 P-beschikbaarheid: betrek de naast N-beschikbaarheid ook P-beschikbaarheid om de 

effecten op de vegetatie in beeld te brengen. Probeer hiervoor een relatie af te leiden 

tussen beschikbaar (geadsorbeerd) fosfaat in de bodem (en in de bodemoplossing) en 

biomassa-productie. 
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1 Introduction 

The WaterWijzer Natuur (WWN) is meant to test and predict the occurrence probability of 

vegetation types, both under current and forecasted climate conditions. Whether or not 

vegetation types (phyto-sociological associations, nature target types, habitat types) can 

persist where they occur or have been planned, is tested on the basis of three site factors, i.e. 

moisture regime, nutrient availability, and soil acidity (Figure 1). 

FIGURE 1 SCHEMATIC REPRESENTATION OF THE WATERWIJZER NATUUR (WWN) 

 

Probability 
of occurrence 
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Reliable estimates of these three site factors in view of changes in climate, groundwater 

levels and atmospheric deposition, requires a process based modelling approach. Based on 

the work of Bartholomeus et al. (2008; 2011) and Bartholomeus & Witte (2013), the effect of 

soil moisture has been adequately modelled (Witte et al., 2015). The modelling of nutrient 

availability and acidity, however, needs substantial improvement.  

The knowledge on vegetation effect modelling in the Netherlands is distributed amongst 

various research institutes (i.e. KWR, Wageningen Environmental Research (WEnR) and PBL) in 

the Netherlands, being an inefficient and unwanted situation. Therefore, STOWA, the Ministry 

of Economic Affairs, Ministry of Transport-WVL and the Knowledge for Climate Foundation 

decided to combine the research forced of the involved institutes on this topic. In a previous 

project a pilot study the different model concepts at the research institutes were compared 

(Van Ek et al., 2014). One of the conclusions of this research was that the existing models 

are not suitable for climate projections, because they are based on indirect relationships 
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between habitat and vegetation using the climatic situation of the last decades as a fixed 

reference. Furthermore, it was acknowledged that the modelling of soil acidify and nutrient 

availability are the weakest point of the current modelling status.  

Although several models are available to simulate dynamics in soil nutrients and pH, here we 

only focus on the models used by KWR within the WWN, i.e. CENTURY and SWAP-ORCHESTRA, 

and the WEnR model VSD+ used together with the plant species model Props (Reinds et al., 

2015). The idea is that we use the best of these two groups of models to identity the most 

suitable methods and/or formulations to incorporate into the WWN. 

In this report we will first define (in Chapter 2) what is meant by: (i) nutrient availability and 

(ii) soil acidity in the context of WWN. This is followed by an inventory and comparison of 

used modelling concepts among the two model systems in view of nutrient availability and 

acidity. We finalized Chapter 2 with an inventory of strong and weak points of both models. 

Furthermore an inventory of available relevant datasets that can be used for parametrization 

and validation is performed (Chapter 3). In Chapter 4 the results are discussed. We conclude 

this report with conclusions (Chapter 5). 

This research was financed / supported by the following organizations:  

 STOWA 

 Delta program Zoetwater (Ministry of Infrastructure and the Environment) 

 Ministry of Economic Affairs 

 PNL Netherlands Environmental Assesment Agency 

 Provinces of Gelderland, Utrecht and Noord-Brabant 

 Water board Aa & Maas and Water board Vechtstromen 

 Knowledge program Lumbricus 

 Nature conservation organisations Natuurmonumenten and Staatsbosbeheer 

 Research Institutes KWR and WEnR 
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2 Model comparison 

2.1 Assumptions and requirements WWN 

Nutrient availability and soil acidity can be interpreted and estimated in different ways. To 

avoid ambiguity, it is necessary to make definitions of nutrient availability and soil acidity in 

the context of WWN. Furthermore, we clarify the scope of WWN in terms of their target 

ecosystems and scenarios to be studied. Clarifying the scope helps to identify which 

aspects/processes/resolution of nutrient availability and soil acidity need to be considered 

for successful application of WWN, and therewith to make an effective comparison between 

different models to predict nutrient availability and soil acidity. 

2.1.1 Definition of nutrient availability and soil acidity in the context of WWN 

The WWN predicts the occurrence probability of vegetation types from nutrient availability 

and soil acidity via plot-mean indicator values of Witte et al. (2007) for nutrient and acidity 

(Nm and Rm, respectively) using the framework of PROBE model. Therefore, in the context of 

WWN, the nutrient availability and soil acidity should be the measures which directly link to 

the plot-mean indicator values. 

Indicator values of Witte et al. (2007) have been derived from the division of plant species 

into ecological groups by Runhaar et al. (2004). These Runhaar values reflect the vegetation 

characteristics in relation to environmental conditions, namely salinity, soil moisture, 

nutrient availability, and acidity. They closely resemble the internationally accepted indicator 

values of Ellenberg, but are tailor made to Dutch vegetation. Indicator values of a species are 

determined primarily based on expert judgement on the ‘ecological group’s where the 

species typically occur. Each ecological group is characterized with ordinal scales of nutrient 

availability (or ‘potential plant production based on nutrient availability’, divided in: 

poor/moderate/rich/very rich) and acidity (acid/weakly acid/alkaline). The nutrient 

availability can also be rephrased as the amount of nutrient available in soil under a given 

set of abiotic conditions, even if the nutrients cannot be all taken up by plants to produce 

biomass due to other limitation on plant growth (such as soil moisture, acidity, or 

development stage). For example, a low-productive pioneer vegetation can still be evaluated 

as ‘rich in nutrient availability’ if it is judged to contain large amount of nutrients in plant-

available forms. Since many species have been ascribed to two or more ecological groups, 

the ecological amplitude of species are taken into account in calculation of indicator values 

(see Witte et al. 2007 for details of the calculation). With that, the indicator value describes 

the preference of each plant species on a continuous scale for nutrient availability (N, 

ranging from 1.0 = nutrient poor to 3.0 = very nutrient rich) and acidity (R, ranging from 1.0 

= acid to 3.0 = alkaline). Next, indicator values of a plot (Nm and Rm) are calculated as an 

arithmetic mean of the indicator values of all species occurring in the plot. In PROBE, 

vascular plants and mosses are included for the calculation of plot-mean indicator values.  

Existing studies showed that Rm is related to measured soil pH reasonably well (Douma et 

al., 2012; Cirkel et al., 2014b). However, Rm is less dependent on soil acidity on high pH 

level, as reflected in the break point (pH
KCl

=5.05) of the regression model of Cirkel et al. 

(2014b). A similar trend was observed by Schaffers and Sykora (2000), who found that 

Ellenberg acidity value increases with soil pH
CaCl2

 only until pH 4.75, above which it hardly 

changes. Cirkel et al. (2014b) also found that the explained variance of the relationship 

between pH
KCl

 and Rm decreased with decreasing groundwater depth. This is because in wet 



 KWR2017.053 | June 2017 18  

 

 

Comparison of model concepts for nutrient availability and soil acidity in terrestrial ecosystems 

 

soils plants with aerenchym are capable of releasing oxygen into the soil. By doing so, they 

can create large pH gradients around their roots, especially in case of upwelling alkaline 

groundwater. 

For this study, we define soil acidity as soil pH (pH_H2O) in the root zone of plants. Since 

temporal variation of soil pH can be large, even within a growing season (Cirkel et al., 

2014b), we suggest to consider either the yearly average or preferably the growing season 

averaged soil pH. In those cases when pH measurements are available as pH_KCl or 

pH_CaCl2 we use available robust relationships to transfer those measurements to pH_H2O 

values (e.g. Fotyma et al., 1998; for pH_CaCl2; Wamelink et al., 2005; for pH_KCl). 

Nm is moderately and consistently related to measured nutrient availability (Douma et al., 

2012; Fujita et al., 2013; Witte et al., 2015). However, there are a number of measures to 

express nutrient availability for plants, and the strength of correlation with plant 

characteristics differs among these measures (Ordonez et al., 2010; Fujita et al., 2013). It 

was indicated that soil P measures (e.g. P mineralization rate, soil P:C ratio, soil dissolved P) 

were slightly better related to Nm than soil N measures (e.g. N mineralization rate, soil N:C 

ratio, soil dissolved N) (Fujita et al., 2013). Furthermore, phosphorus (P) limitation and 

nitrogen limitation are both common in grasslands of north-western Europa (Van Dobben et 

al., 2016). Therefore, for this study, we take both N and P into account as two pivotal 

elements for plant growth. For several habitat types a comparison was made between the 

optimal Nm Runhaar indicator values and various other corresponding values either based 

on model results (Van Hinsberg & Kros, 1999), or measurements (Wamelink et al., 2011).  

FIGURE 2 COMPARISON OF THE PLOT-MEAN INDICATOR VALUE FOR NUTRIENTS RICHNES (NM RUNHAAR) 

AND VARIOUS SOIL N MEASURES FOR 15 DUTCH HABITAT TYPES AFTER VAN HINSBERG AND KROS (1999) 

AND WAMELINK ET AL. (2011). THE EXAMINED SOIL N MEASURES ARE MEASURED SOIL TOTAL N (IN MG 

N/KG; UPPER LEFT), MEASURED SOIL C/N (UPPER RIGHT), MEASURED TOP SOIL NITRATE 

CONCENTRATIONS (IN MG NO3/KG MEASURED AS EXTRACTABLE IN 1M KCL; LOWER LEFT) (USING THE 75-

PERCENTILE), AND MODELED N AVAILABILITY IN TOP SOIL (I.E. SUM OF N MINERALIZATION AND N 

DEPOSTION; IN KG N/HA/YR, LOWER RIGHT). EACH POINT REPRESENTS A HABITAT TYPE (I.E. AVERAGE 

VALUES OF SEVERAL PLOTS WHICH FALLS INTO THAT HABITAT TYPE). NOTE THAT NM RUNHAAR IS 

SIMILAR BUT NOT IDENTICAL TO THE INDICATOR VALUE NM WHICH WE USE FOR THIS STUDY. 
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We assumed, mineralization rate of N (or P) should better represent nutrient availability for 

plants than total N (or P), C:N (or C:P) ratio, or extractable N (or P), as it integrates both the 

nutrient pool and the controlling factors of nutrient turnover (such as temperature and 

moisture). In fact, mineralization rates were related to Nm slightly better than other 

measures of N and P at individual stand level (Fujita et al., 2013). The similar trends were 

observed on an association level (Van Hinsberg & Kros, 1999; Wamelink et al., 2011). It was 

indicated that modelled levels of N availability, which was sum of N mineralization and N 

deposition, was better related to indicator value of nutrient richness than soil total N, yet not 

better than nitrate concentration and C:N ratio (Figure 2). Therefore, we suggest to consider 

net N mineralization rate (i.e. gross N mineralization minus N immobilization by microbes) 

as the main source of available N for plants. 

N mineralization rates fluctuate largely within and between years. However, Fujita et al. 

(2013) found that time scale with which N mineralization rates were evaluated (i.e, one 

growing season, one year, or five years) had only minor effect on the relationship between N 

mineralization and Nm. Therefore, to start with, we choose a time scale of one year to 

evaluate N mineralization rates as the explanatory variable to predict Nm. See Discussion 4.4 

for potential issues of the time scale to be tackled in the Phase 2. 

In addition to the mineralization, we also take several other sources of N into account for our 

estimate of plant available N. In the Netherlands, atmospheric N deposition contributes to a 

substantial part of mineral N pool in soil. Also, non-symbiotic N fixation (i.e. N fixation by 

free-living microorganisms) can contribute to a large proportion of mineral N input in low 

productive ecosystems (e.g. ranging from 0.1 to 21 kg/ha/year in temperate unfertilized 

grasslands; Reed et al. 2011). Furthermore, in wet systems, N loss via denitrification is not 

ignorable. Based on these assumptions, we define N availability for plants (Navail, 

gN/m2/year) as concentration of N-NH4 and N-NO3 in root zone of plants for a period of 1 

year, which is formulated as: 

Navail = net N mineralization + atmospheric N deposition + asymbiotic fixation – 

denitrification  (1) 

 

We assumed, mineralization rate of N (or P) should better represent nutrient availability for 

plants than total N (or P), C:N (or C:P) ratio, or extractable N (or P), as it integrates both the 

nutrient pool and the controlling factors of nutrient turnover (such as temperature and 

moisture). In fact, mineralization rates were related to Nm slightly better than other 

measures of N and P (Fujita et al., 2013). Therefore, we suggest to consider net N 

mineralization rate (i.e. gross N mineralization minus N immobilization by microbes) as the 

main source of available N for plants. Since timescale of the mineralization estimate had only 

minor effect on the relationship with Nm (Fujita et al., 2013), we suggest a time scale of one 

year. In addition to the mineralization, we also take several other sources of N into account 

for our estimate of plant available N. In the Netherlands, atmospheric N deposition In 

addition, we consider P inflow via atmospheric deposition and sorption and/or weathering. 

In short, our definition of P availability (Pavail, gP/m2/year) for this study is:  

Pavail = net P mineralization + atmospheric P deposition + P sorption + P weathering  (2) 
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2.1.2 Scope of WWN application 

The target system of WWN is (semi-)-natural terrestrial ecosystems. It includes different 

vegetation types (grasslands, forests, heath), different moisture regimes (dry, moist, wet, but 

not constantly inundated systems such as peat) and different soil types (e.g., sandy, silty, 

and clayey soils). Former agricultural lands may also be considered. Ecosystems under the 

influence of brackish water are out of our scope. The WWN is intend to be applicable at the 

national scale and user friendly so that it can easily be used by the Water Boards,  

WWN will be used to evaluate the changes in vegetation due to the results of climate change 

and water management (which impacts groundwater depths and groundwater level 

fluctuations). This implies that the chosen models of WWN should include relevant processes 

of nutrient availability and acidity that are affected by climate change and water 

management. However, vegetation development is also affected by other environmental 

influences, like different levels of atmospheric N deposition, vegetation management such as 

mowing and thinning (and optionally, grazing and sod-cutting too, although these are more 

complicated to model), and landuse change (e.g. from agricultural lands to nature area). To 

anticipate on possible future developments of the WWN, the chosen models of nutrient 

availability and soil acidity should be easily expandable to these environmental influences. 

In this following section, we will describe the models which compute the two site factors 

(nutrient availability and soil acidity), as well as the functional relationships between abiotic 

factors and the influenced processes for both site factors, e.g. mineralisation, 

(de)nitrification. 

2.2 PROBE (SWAP-CENTURY-ORCHESTRA) 

2.2.1 General description 

PROBE is the eco-hydrological model to predict the occurrence probability of vegetation 

types, developed by KWR and drinking water companies. Modelled habitat factors (soil 

moisture, soil nutrient availability, soil acidity) are used to predict the response on potential 

occurrence of vegetation types and the conservation value they represent. The way how the 

habitat factors are computed is different between versions (Table 1). In PROBE-2.1 (Witte et 

al., 2015), habitat factors were computed using transfer functions (to speed-up the 

calculations) derived from mechanistic models such as the hydrology model SWAP (for soil 

moisture) and the soil module of CENTURY model (for nutrient availability). In PROBE-2.2 

(Cirkel et al., 2016a), soil pH was dynamically simulated using the chemistry model 

ORCHESTRA coupled with SWAP, although the model is not yet fully operational. In PROBE-3 

(Fujita et al., 2016), the hydrology model SWAP, soil module of CENTURY, and plant module 

of CENTURY are dynamically coupled to compute soil moisture and nutrient availability. Due 

to the dynamic coupling, feedback effects between soil, vegetation, and water are explicitly 

included in PROBE-3. The soil module of CENTURY includes C, N, and P dynamics. In PROBE-3, 

pH is not dynamically modelled, but roughly approximated using empirical relationships 

from Aggenbach et al. (2013a) and Stuyfzand (2010).  

The primary target system of PROBE is (semi-)natural herbaceous ecosystems. It can be 

applied for dry to wet ecosystems, but not (yet) for peatlands and for saline ecosystems. The 

model will be applied and validated for heath ecosystems in an on-going project (BTO 

400554/187). PROBE-2.1 was successfully applied to case studies of the catchments ‘Baakse 

Beek’ (Witte et al., 2015) and ‘Tungelrooyse Beek’ (Van der Knaap et al., 2015; Van der 

Knaap et al., submitted). PROBE 3 was also applied for an agricultural crop system (Fujita et 

al., 2016). To apply the model for national-scale prediction of vegetation, we have developed 
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a number of repro-functions and initialization values for different soil types in the 

Netherlands.  

PROBE-2.1 has a user-friendly interface which is the starting point of the WWN. Via the 

interface, users can select different scenarios of future climate and hydrology. PROBE-2.1 

uses geographical input stored as raster maps, enabling prediction of vegetation on a 

landscape level. The model outputs of PROBE-2.1 are given as maps as well, which show 

occurrence probability of different vegetation types under different climate scenario as well 

as conservation values of each cell. Thanks to the use of transfer functions, the computation 

time of PROBE-2.1 is fast (e.g. three minutes for a catchment area of ca. 270 km
2

 on a 25 m 

resolution). PROBE-3 is equipped with a simple user interface and meant for simulation of a 

single point. 

In this report, we primarily present PROBE-3 (for process-based modelling of hydrology, soil, 

and plants) and PROBE-2.2 (for process-based modelling of soil pH). The linkage between the 

modules is shown in Figure 3. Note that the dynamic coupling of pH with other model 

components is not yet realized. The N flows of PROBE3 are schematically shown in Figure 4. 

Temporal and (vertical) spatial scales used in PROBE-3 (CENTURY-SWAP) and PROBE-2.2 

(SWAP-ORCHESTRA) are as follows. Note that these scales can be adjusted by the user, 

although the sensitivity of the model outputs to these scales has not been tested.  

For the SWAP model, we choose soil layers of 1cm depth for 0 – 600 cm. For the ORCHESTRA 

model, the soil of 500 cm depth was divided into 65 soil layers, with 1 cm interval for the 

top 10 cm depth, 5 cm interval for 10 – 60 cm depth, and 10 cm interval for 60-500 cm 

depth. For CENTURY model, we used 3 soil layers, 0-20, 20-310, and 310-595 cm. In 

CENTURY, soil organic matter dynamics were simulated only in the top soil layer, while 

transport of mineral N was simulated all through the layers.  

Time step of SWAP varies depending on the relevant process. We chose the time step of a 

day for SWAP output. Time step of ORCHESTRA and CENTURY were set to be one day. The 

time step of the CENTURY model can be easily adapted to larger scales, e.g. to the original 

values of one week for the soil and one month for the plant compartment. 

TABLE 1. DIFFERENCE BETWEEN VERSIONS OF PROBE MODEL. EACH VERSION WAS SCORED FOR DIFFERENT 

ASPECTS 
1)

. 

Version Model 

validation 

Computation 

time 

pH Feedback 

between soil, 

water, 

vegetation 

Details of 

processes 

included 

User 

interface 

PROBE 2-1 +++ +++ + +
 

+ +++ 

PROBE 2-2 + + +++ ++ ++  

PROBE 3 ++ + + +++ +++ + 

1) 

+++: main focus, ++:  partly addressed,  +: slightly addressed 
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FIGURE 3 LINK BETWEEN DIFFERENT MODULES (E.G. PLANT MODULE, SOIL+LITTER MODULE, HYDROLOGY 

MODULE, PH MODULE). 

 

FIGURE 4 SOIL N FLOWS IN CENTURY. NUMBERS IN PARENTHESES INDICATE CALCULATION SEQUENCE. 

 

2.2.2 Processing 

2.2.2.1 Decomposition and N mineralization (CENTURY Soil module) 

CENTURY includes four carbon pools in soil surface and in soil: three soil organic matter 

pools (i.e. active, slow, and passive pools), and surface microbial pool. Further, above and 

belowground plant residues are split into four pools for grasslands (i.e. surface metabolic, 

surface structural, belowground metabolic, and belowground structural) (Figure 5 above) and 

seven pools for forests (i.e. in addition, dead fine branches, dead large wood, and dead 

coarse roots) (Figure 5 below). 
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FIGURE 5 SOIL ORGANIC MATTER TURNOVERS IN CENTURY FOR GRASSLANDS (ABOVE) AND FOR FORESTS 

(BELOW). DOTTED LINES ARE THE FLOW OF RESPIRATION (WHICH RELEASES CO
2

). 

 

 

 

Decomposition of carbon is described with simple first-order kinetics as: 

𝐷𝐸𝐶𝑖 =  𝑘𝑖 ∙ 𝐶𝑖  (3) 

where DEC
i

 is the amount of decomposed C from pool i (gC/m
2

/day), k
i

 is the decomposition 

rate of pool i (day
-1

), and C
i

 is the amount of C in pool i (gC/m
2

). 

The decomposition rates are computed by multiplying the pool-specific decomposition 

coefficient (kmax
i

, day
-1

) and reduction terms for soil temperature (rf
T,i

) and soil moisture 

(rfθ
,i

). Further, the decomposition rate of the active pool is modified by soil texture rf
Tex,i

), and 
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those of surface structural pool and belowground structural pool are modified by lignin 

content (rf
L,i

). 

θ, T, Tex, L,i i ii i ik rf rfkm rf fa rx    

 (4) 
The decomposition is assumed to be mediated by microbes, with an associated loss of CO

2

 

as a result of microbial respiration. The rate of loss of C by respiration depends on the 

growth efficiency of microbes. Potential decomposition rate of carbon is thus formulated as: 

(1 )i i

i

potCmin e DEC  
 (5) 

where potCmin is the carbon mineralized by microbial respiration from all pools (gC/m
2

/day), 

e
i

 is the growth efficiency of microbes when assimilating carbon in pool i (fraction between 0 

and 1). CENTURY uses constant e
i

 values except for active pool (i.e. e
6

), for which increasing 

clay content linearly increases e. 

Mineralization and immobilization of nitrogen is strongly coupled with the decomposition of 

carbon. The N flows follow the C flows and are equal to the product of the carbon flow and 

the N:C ratio of the pool that receives the carbon. The N associated with carbon loss via 

respiration is assumed to be mineralized. The amount of N mineralized can thus be 

formulated as: 

 , ,c i c i i c i j

i j

potNmin DEC NC DEC e NC    
 (6) 

where NC
i

 is the N:C ratio of the decomposing pool, NC
j

 is the N:C ratio of the receiving pool. 

C:N ratios of structural pools (i.e. surface structural, belowground structural) are fixed as 

150, whereas N content of the metabolic pools vary as a function of the N content of the 

incoming plant residue. C:N ratio of soil microbe and of SOM linearly decreases with 

increasing amount of N in the incoming plant residues and in soil mineral N pool, 

respectively (Figure 6).  

FIGURE 6 RELATION BETWEEN C:N RATIO AND SOIL MINERAL N (LEFT) AND PLANT RESIDUE N (RIGHT). 

  

When potential N mineralization rate is positive, that amount of N is mineralized and 

released into the soil mineral N pool. When potential N mineralization rate is negative, that 

amount of N is immobilized from the mineral N pool. If the N in mineral N pool is not 

enough to realize the N immobilization, decomposition of carbon is inhibited as follows:  
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1 potNmin minN

I minN
potNmin minN

potNmin




 


  (7) 

where minN is the amount of N in mineral N pool (gN/m2), I is the inhibition factor (fraction 

between 0 and 1). Finally, actual rate of carbon and N mineralization are written as: 

Cmin I potCmin

Nmin I potNmin

 

 
 

Mineralized N enters the ammonium pool of the top soil.  

CENTURY also includes P, it simulates the mineralization of P in CENTURYin the same way as 

N mineralization. 

Decomposed carbon from structural pools, active pool, and slow pool goes to several pools. 

The flow rates from surface structural pool to surface microbe and slow pools are controlled 

by lignin content of above-ground plant materials. The flow rates from belowground 

structural pool to active and slow pools are controlled by lignin content of below-ground 

plant materials. Flow rates from active pool to slow and passive pools are controlled by soil 

texture. The flow rates of slow pool to active and passive pools are also controlled by soil 

texture. 

Division of plant residues into metabolic and structural pools are controlled by lignin and 

nitrogen content in the plant residue.  

2.2.2.2 Nitrification and denitrification (CENTURY Soil module) 

Nitrification rate follows a first-order process depending on ammonium concentration in soil, 

and is controlled by soil ammonium concentration, soil moisture, and soil pH. 

4 4[N NH ]
nit NH T pHNit k fN fN fN fN      

 (8) 
where Nit is the nitrification rate (g N/m2/day), knit is the maximum nitrification rate (day

-1

), 

[N-NH
4

] is the concentration of NH4 in top soil (gN/m
2

), fN
NH4

 is the reduction term due low 

concentration of N-NH4 in soil (-), and fNθ is the reduction term due to soil moisture (-),fNT 

is the reduction term due to soil temperature, and fN
pH

 is the reduction term due to soil pH. 

knit is set to be 0.15 day
-1

. Nitrification is limited by moisture stress when soil water-filled 

pore space is too low and by oxygen availability when water filled pore space is too high. 

Nitrification is not limited when pH is greater than 7, but decreases exponentially as pH falls 

below 7. 

Denitrification is simulated as a function of concentration of nitrate, CO2 (as a proxy for 

labile C), and soil moisture: 

3 2( , )NO CODenit MIN fD fD fD 

  (9) where Denit is the denitrification rate (g N/m2/day), fD
NO3

 is the denitrification rate limited by 

NO3 concentration (gN/m2/day), fD
CO2

 is the denitrification rate limited by CO2 

concentration (gN/m2/day), and fDθ is the reduction factor due to soil moisture (fraction 

between 0 and 1). Denitrification does not occur below WFPS of 50-60% ; above this 

threshold it increases exponentially with WFPS. The shape of the slope depends on soil 

physical characteristics and labile C availability. 
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2.2.2.3 Inflow and outflow of mineral N (CENTURY Soil module) 

Ammonium and nitrate originated from atmospheric N deposition directly enters the 

ammonium and nitrate pool in the top soil, respectively. Non-symbiotic N fixation is 

formulated either as a function of precipitation or as a function of N:P ratio in the mineral 

pool in CENTURY. Since the coefficient values of the non-symbiotic N fixation in CENTURY 

were obtained by model tuning procedure (Parton et al. 1987) and therefore not 

underpinned by theoretical or empirical evidence, we use a the median value of Reed et al. 

(2011), 0.57 gN/m2/yr, as a constant rate of for non-symbiotic N fixation. The fixed N is 

added to the ammonium pool of mineral N in the top soil layer. 

Mineral N is leached from the soil with saturated water flow. CENTURY uses an empirical 

function to compute the fraction of mineral N which is leached out (as a function of soil 

texture and monthly saturated water flow). In PROBE, we simulated transfer of dissolved N 

(N-NH
4

 + N-NO
3

) in soil simply as the products of the water flows and the concentration of 

dissolved N in the originating layer (i.e. advective transport), assuming that dissolved 

nitrogen and water move at the same advective rate. 

2.2.2.4 Plant production (CENTURY Plant module) 

 

Plant production in grasslands 

Plant growth of grasslands are simulated dynamically in CENTURY, and are divided into 

above-ground and below-ground biomass. Potential production of above-ground plant 

biomass is calculated by plant-specific maximum growth rate, which is modified by reduction 

terms of soil temperature, soil moisture, and shading effects. The shading effect is 

calculated as a function of living and dead plant materials, with an assumption that dead 

plant materials physically obstruct plant production. Potential production of below-ground 

biomass is computed based on shoot:root ratio. Shoot:root ratio can be either approximated 

by annual precipitation, or as a function of time since planting. Actual plant production 

becomes smaller than the potential plant production when currently available N supply (i.e. 

mineral N available for plants and symbiotic N fixation) is not enough to support the 

potential production. The fraction of mineral N which is available for plants is computed as a 

function of root biomass. 

N concentration in newly created biomass varies depending on the amount of currently 

available N supply within the range of pool-specific maximum and minimum C:N ratio, and 

the maximum and minimum C:N ratio  of shoots changes with the size of shoot (Figure 7). 

Newly created biomass is partitioned into shoot and roots pools, either with a constant rate, 

or as a function of age. 

Decomposition is calculated as a function of soil moisture. In addition, when above-ground 

plant biomass exceeds a threshold value, plants die at a constant rate. At the senescence 

month plants die at a constant rate.  
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FIGURE 7 THE MAXIMUM AND MINIMUM C:N RATIO AS A FUNCTION OF THE SHOOTS BIOMASS. 

 

Plant production in forests 

The growth of trees is simulated in a similar way to grasses, but their biomass is divided into 

five components: leaves, fine roots, fine branches, large woods, and coarse roots. Potential 

production of trees is calculated as potential gross production of trees minus maintenance 

respiration. The potential gross production is controlled by the effects of soil moisture, 

temperature, and leaf area index (which is approximated from large wood C pool). The 

maintenance respiration is calculated as a function of wood N content and temperature. Here 

it is assumed that only the sapwood part of the tree, which can be approximated by large 

wood size, respires C. The newly-produced biomass is allocated to different component with 

specific allocation rates. Leaves die with a month-specific death rate (with options to include 

the effect of soil moisture, temperature, or day length on leaf death rate). Death rates of 

other forest components are constant all through the year.  

Plant production in forests with understory 

The growth of forests with understory can be simulated in CENTURY too. It is a combination 

of growth of trees and growth of grasses, with extra functions to mimic competition between 

the two groups. Due to competition for light, growth of grasses are suppressed by shading 

of trees. Competition for nutrient is computed in a way that higher tree basal area and 

higher amount of mineral N in soil favours the fraction of nutrient uptake by trees.  

2.2.2.5 pH (ORCHESTRA) 

Soil pH is computed using a set of equations in the program ORCHESTRA (Cirkel et al., 

2016a). The model was built primarily for groundwater-dependent grassland systems. Water 

content and water fluxes between soil layers were simulated with SWAP. Root zone was 

defined as 40 cm depth. Simulation was conducted with a 1-day time step. In Figure 8 a 

schematic overview of processes influencing the H
+

 is given. 
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FIGURE 8 SOIL H
+

 FLOWS IN ORCHESTRA. 

 

The geochemical processes included in the model are as follows: adsorption and desorption 

on organic materials, clay, and oxides; dissolution and precipitation of gibbsite (Al(OH)
3

) and 

calcite (CaCO
3

); pH-dependent silicate weathering; carbonate equilibrium (with CO
2

 in gas 

phase); production of CO
2

 by root respiration as a function of plant production; and gas 

diffusion of CO
2

 depending on soil moisture. Uptake of elements by plants is not considered. 

Time-dependent solute transport (including those from groundwater and rainwater) and gas 

diffusion (only for CO2) are simulated as well. 

In principle, we used the standard parameter values equipped in ORCHESTRA, except 

following modifications.  

Silicate weathering (and contaminant release of Ca
2+

) was modelled with a simplified 

equation as: 

 0.5
10 ref actpH pH

W rw
 

 

 (10) W is the weathering rate (mol
c

/m
2

/s/cm) , rw is the maximum weathering rate 

(mol
c

/m
2

/s/cm), pH
ref

 is the reference pH, pH
act

 is the actual pH. rw was set to be 1.15·10
-12

, 

pH
ref

 was set to be 3.5. 

CO
2

 production by root respiration was approximated from plant production, which was 

calculated from transpiration.  

2.2.2.6 Hydrology (SWAP) 

Soil Water Atmosphere Plant model, SWAP (Van Dam et al., 2008), simulates transport of 

water in vadoze zones in interaction with vegetation development. SWAP is a one-

dimensional, vertically directed model. When the simulated site is groundwater dependent, 

the daily groundwater level was used as a lower boundary condition. We selected the simple 

crop module, in which crop-specific and growth-stage-specific parameter values are used to 
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compute upper boundary conditions for soil water movement. For simulation of water loss 

by evapotranspiration we distinguished between ‘vascular plants’ and ‘bare sand, mosses 

and lichens’. The potential evapotranspiration of vascular plants was assumed to equal 

reference crop evapotranspiration according to Makkink (i.e. crop factor of 1.0). Total 

evapotranspiration was simulated as a cover-weighted average of both groups.  

2.2.2.1 Initialisation 

CENTURY has a number of approximation rules to aid initialization of state variables and 

parameter values. For initialization of soil C pools, users need to give values for the soil total 

C, soil total N, soil total P, and litter C only. The initial amounts of C, N, P in each pool are 

then computed with vegetation-structure specific fractions to split the total amounts. For 

vegetation-specific parameters, a set of default values are suggested for each vegetation 

types.  

For multiple-location simulations, we have developed a method to estimate Initial values of 

soil total C, N, P for CENTURY based on the soil type (‘bodemcode’) of that location (Cirkel et 

al., 2016a). Similarly, initial values of state variables of ORCHESTRA and initial soil physical 

characteristics needed for SWAP (e.g. van Genuchten parameters) can be approximated from 

the soil type. 

2.2.3 Model outputs 

Model outputs of PROBE-3 include values of state variables (on a daily step) such as: 

 Organic C and N content in all soil pools and plant components (gC/m
2

 or gN/m
2

) 

 Mineral N content in all soil layers (gN/m
2

): nitrate and ammonium separately for the top 

soil 

 Plant biomass of each component (g biomass/m
2

) 

 Soil water content in all soil layers (cm
3

/cm
3

) 

Furthermore, PROBE-3 also computes daily process rates such as: 

 N mineralization/immobilization (gN/m
2

/day) 

 N leaching (gN/m
2

/day) 

 Symbiotic N fixation (gN/m
2

/day) 

 Nitrification and denitrification rates (gN/m
2

/day) 

 

2.3 VSD
+

/GrowUp/SUMO 

2.3.1 General description 

The VSD
+

 model (Bonten et al., 2016) is a single-layer model which consists of charge and 

mass balances to calculate changes in pH and element concentrations in the soil solution 

and an organic C and N model. The VSD+ model is an extension of the VSD model, a very 

simple dynamic soil acidification model, which has been developed as the simplest extension 

of steady-state models for critical load calculations and with an eye on regional applications. 

The model requires only a minimum set of inputs (compared to more detailed models) and 

execution time is minimised by reducing the set of model equations to a single non-linear 

equation. To facilitate the exploration of model behaviour at individual sites, the model is 

linked to a graphical user interface (GUI). This GUI allows easy (Bayesian) calibration, forward 

simulation (scenario analyses) and can also be used to compute target loads and delay times 

between deposition reductions and ecosystem recovery. Percolation of water, i.e. water that 

is leaving the soil compartment, is input and can be obtained by any hydrological model. The 
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same is true for litter input and nutrient uptake by vegetation, which can be obtained by any 

growth model (Figure 9). The GrowUp application is often used. This is a tool to simulate 

forest growth, litterfall and nutrient uptake by trees in forest stands, including effects of 

(simple) forest management. GrowUp allows especially to investigate effects of changes in 

forest growth and management on VSD+ model (version 1.0 or later) results. 

Because the focus in both research and clean air policies has shifted from acidification to the 

various effects of N deposition and climate change, soil-ecosystem models it includes 

detailed descriptions of C and N processes, and provide output variables needed for linked 

vegetation models. The extension in VSD
+

 consists of descriptions of C and N pools and their 

interactions, modelled along the formulations of the RothC model (Coleman & Jenkinson, 

2014). The VSD
+

 model can predict both trends and absolute values of (besides SO
4

, Ca, Mg, 

K, Na and Cl) NO
3

 and NH
4

 concentrations and C/N ratios and pH, which makes the VSD+ 

model suitable for providing input for plant species diversity models like for instance the 

vegetation module of PROBE. The C and N model is completely integrated in the VSD+ model. 

Yearly interactions between pH and decomposition and (de)nitrification take place. The other 

way around, mineralisation and (de)nitrification affects pH. Litterfall, nutrient uptake and 

from a hydrological model water percolation and soil moisture are input in VSD+. There is no 

feed-back between growth and nutrient availability or between growth and water percolation 

(Figure 9). VSD+ has also been coupled to the succession module SUMO (Wamelink et al., 

2009), which implies a feed-back between nutrient availability and growth and litter 

production. With SUMO it is possible to calculated effects of different management options. 

P is included in the chemical part of the model by Langmuir adsorption and it is part of the 

charge balance. P is not yet included in the organic part of the model. 

FIGURE 9 LINK BETWEEN DIFFERENT MODULES (E.G. PLANT MODULE, SOIL+LITTER MODULE, HYDROLOGY 

MODULE, PH MODULE). THE VSD+- MODEL INCLUDES A SOIL ORGANIC MATTER PART AND A SOIL 

CHEMISTRY PART.  

VSD+

Growth model
(GrowUp)
(SUMO)

Hydrological 
model

Percolation

Plant uptake
Incl. management

Soil Organic model (RothC):
C, N

Soil chemistry:
NO3, NH4, H2PO4, K, Ca, Mg, 

Na, SO4, Cl, pH

N mineralisation 

Litter input
Incl. management

Deposition
Weathering

 

SUMO simulates the biomass and nutrient dynamics in the vegetation. The time step of the 

model is one year. In each time step the biomass, biomass growth, death  and removal of 

biomass are calculated. The growth is in turn calculated on the basis of an assumed 

maximum growth, which is reduced by nutrient availability (provided by VSD
+

) and light 

interception. The dead biomass (litter with nitrogen content) is returned to the relevant pools 

in VSD
+

 (Figure 10). 
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FIGURE 10 LINK BETWEEN DIFFERENT MODULES (E.G. PLANT MODULE SUMO, SOIL+LITTER MODULE, 

HYDROLOGY MODULE, PH MODULE). THE VSD+- MODEL INCLUDES A SOIL ORGANIC MATTER PART AND A 

SOIL CHEMISTRY PART.  

VSD+

Growth model
SUMO

Hydrological 
model

Percolation

Plant uptake
Litter production
Incl. management

Soil Organic model:
C, N

Soil chemistry:
NO3, NH4, H2PO4, K, Ca, Mg, 

Na, SO4, Cl, pH

N mineralisation 

Nutrient availability

Deposition
Weathering

Potential and actual 
evapotranspiration

Temperature

 

FIGURE 11 SOIL N FLOWS IN VSD
+

. NUMBERS IN PARENTHESES INDICATE CALCULATION SEQUENCE. 

 

2.3.2 Processing 

2.3.2.1 pH (VSD+) 

A schematic overview of processes which influences the flows of H+ is given in Figure 12. 

Plant N 

Soil organic N NH4 NO3

Leaching (5)

NOX deposition (1)NH3 deposition (1)

N fixation (1)

Nitrification (3)

N2/N2O

Denitrification (4)

Mineralization (2)

Immobilization (2)

Plant uptake (2)

Organic N input (1)
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FIGURE 12 SOIL H
+

 FLOWS IN VSD
+

. 

 

At every time step the charge balance (Eq. (1)) determines the proton concentration, i.e. pH, 

in the soil solution from the concentrations of other elements and dissolved organic anions. 

][][][][][][

][][][][][][][

4

322

3423

2

4


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



N HAlN aKMgCa

OrgH COClPOHN OSOH

 (11) 

The changes in the concentrations of elements follow from a mass balance for the individual 

elements, which describes the change in the total amount of an element over time in the soil. 

The one side of the mass balance is the total amount of an element, which is the sum of the 

amounts of the element in the soil solution and in the soil solid phase. For Al, HCO
3

-

 and 

organic acids no mass balance is considered; their supply is assumed to be unlimited, and 

they are calculated from equilibrium equations with [H
+

]. For calcareous soils we also assume 

an infinite supply of Ca and Mg. Complexation of SO
4

, NO
3

, NH
4

, Na and Cl by the soil solid 

phase are not modelled in VSD
+

, and therefore their solid phase concentrations are zero and 

their total amount equals the amount in soil solution. The base cations Ca, Mg, K in the solid 

phase are sorbed at the exchange complex. The other side of the balance includes the sinks 

and sources of elements, as well as element leaching as a consequence of water discharge. 

Sources in VSD
+

 are deposition (all elements), weathering (Ca, Mg, K, Na), input from litterfall 

(Ca, Mg, K), mineralisation (NH
4

) and nitrification (NO
3

). Sinks are leaching, uptake by plants 

(Ca, Mg, K, NH
4

, NO
3

) nitrification (NH
4

) and denitrification (NO
3

). 

2.3.2.2 Decomposition (VSD+) 

Decomposition is calculated in VSD
+

 with the formulation of the RothC model (Figure 13). 

Plant  

Cation 
exchange Soil 
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matter
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+ H uptake cations

Minerals

+ H

+ H leaching anions
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- H adsorption cations
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Redox

- H reduction
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FIGURE 13 SOIL ORGANIC MATTER TURNOVERS IN VSD+.  

 

Plant material is divided in decomposable and resistant plant material (resp. DPM and RPM), 

depending on the type of vegetation. The plant material of grass decomposes easier than 

litter of trees. These two pools decompose to microbial biomass (BIO), humified organic 

matter (HUM) or to CO
2

. Also BIO and HUM are decomposing to BIO, HUM and CO
2

. Each pool, 

except inert organic matter (IOM), which doesn’t decompose, has its own first-order rate 

constant for turnover and these are modified by temperature, soil moisture and soil cover. 

The fraction of C turnover from BIO and HUM to CO
2

 is dependent on clay content. 

2.3.2.3 N mineralisation (VSD+) 

The N fluxes in VSD+ are schematically shown in Figure 11. 

The mineralisation and immobilisation of N are dependent on the turnover of the C pools, 

where the net mineralisation follows from changes in the sum of all organic N pools: 
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where N
mi

 (mol m
-2

 yr
-1

) is the N mineralisation; CN
X,yr

 is the C/N ratio of the respective C pool 

(X = DPM, RPM, BIO, HUM, IOM). 

The C/N ratios of RPM, BIO and IOM are fixed, being resp. 100, 8.5 and 10. For DPM the C/N 

ratio is calculated from the N content of the plant material input. For HUM we assume that 

with turnover of DPM, RPM and BIO all N in these pools is transferred to the HUM pool. 

P mineralisation is not included in VSD
+

 as SOM in VSD+ only contains C and N. So, 

mineralisation of base cations is also not included. 

2.3.2.4 Nitrification and denitrification (VSD+) 

Nitrification and denitrification are modelled as first-order processes depending on the total 

amounts of NH
4

 and NO
3

 available after deposition, uptake, mineralisation and nitrification 

(NO
3

 only). Inputs for VSD
+

 are the first-order rate constants and a modifying factor for site-

specific climate conditions (in fact temperature and soil moisture). (De)nitrification rates in 

VSD
+

 are adjusted for soil pH as follows (De Vries et al., 1988): 

))75.2(4exp(1

1

lim,,,

pH

mfkk
atecnirefnipHni




 (13) 
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))5(5.2exp(1

1
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atecderefdepHde




 (14) 

where pH is the soil solution pH and k
ni,pH

 and k
ni,ref

 (yr
-1

) are the first-order rate constants for 

nitrification at actual pH and at reference conditions (optimal pH, optimal moisture and T = 

10°C) respectively; analogously k
de,pH

 and k
de,ref

 (yr
-1

) for denitrification; mf
ni,climate

 and mf
de,climate

 

are the modifying factors for climate conditions for nitrification and denitrification 

respectively. 

2.3.2.5 Leaching (VSD+) 

Leaching is calculated by multiplying the concentration of the element by the water flux that 

is leaving the soil compartment. 

2.3.2.6 N fixation (VSD+) 

N-fixation is a given input in the VSD
+

 model. It is added as done with deposition to the total 

input of N. 

2.3.2.7 Forest growth model (GrowUp) 

Plant uptake is input in the VSD
+

 model and is often obtained by the tool GrowUp. Total 

uptake of N is the sum of growth uptake, which is the net biomass growth times the element 

contents in the standing biomass, and maintenance uptake, to resupply the losses from 

litterfall and root decay. N uptake in VSD
+

 differs from uptake of base cations, for which we 

use only a net uptake, i.e. growth uptake plus increase in storage in needles for evergreen 

trees. Implicitly, we thus assume that cations are available immediately after litterfall or root 

turnover. Uptake of P is incorporated in VSD
+ 

and thus affects the charge balance. 

GrowUp is of a module that computes time series of forest growth, nutrient uptake and 

litterfall, based on data on growth rates forest management in time. Below a short outline is 

provided of its principles: 

Growth and litterfall 

Yearly stem growth is calculated by interpolating the times series of growth rates. Standing 

biomass of stems is calculated adding yearly stem growth to the standing biomass of the 

year before. Initial stem biomass is computed as a function of the age of the stand at the 

start of the run; when the planting date is after the start of the VSD+ simulation, an initial 

age at the planting year of 2 years is assumed. 

Growth of the different compartments (branches, leaves and roots) is calculated according to 

Equation 1 using yearly interpolated biomass expansion factors (BEFs): 

tcompartmenstemsstemstcompartmen
BEF * BEF / Biomass  Biomass 

 (15) 

The litterfall rates of trees are calculated by functions used in EFISCEN (Schelhaas et al., 

2007). The calculation of litter production is visualized in Figure 14. 
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FIGURE 14 CALCULATION SCHEME FOR THE CALCULATION OF LITTER PRODUCTION 

 

To calculate litter production, we use turnover coefficients per compartment, given as model 

input parameters, and sum over the compartments (stems, branches, roots, and leaves): 


Stem

Branches
tcompartmentcompartmen

coeff. overTurn  * Biomass  production Litter

 (16) 
 

Management 

To compute the soil inputs of carbon and nitrogen, information on the forest management is 

required: e.g. whether whole tree harvesting is practised or stem only and whether root 

removal takes place at the time of a clearcut. Management actions are limited to planting, 

thinning and clear cutting. At planting, the biomass starts to grow with an initial age of two 

years, assuming that two year old seedlings are planted. At thinning or clear cutting, the 

percentage of removed biomass must be specified and for each compartment (stems, 

branches, leaves and roots) whether the biomass is removed from the plot or left at the site. 

When biomass is left at the site, it is added to the amount of litterfall. 

Nutrient uptake 

Nutrient uptake is calculated by multiplying the actual growth per compartment by the 

contents of nutrients (%) for the compartment. N content in leaves is dependent on 

deposition according to: 

)
Ndep(t)*-expNlfdep

min leaves,max leaves,minleaves,leaves
e-(1*)ctN-(ctN+ctN = ctN

 (17) 

Where ctN
leaves

 is N content in leaves (%), ctN
leaves, min

 is minimum N content in leaves (%), ctN, 

max is maximum N content in leaves (%), expNlfdep is the exponent for relation between N 

in litterfall and N deposition and Ndep(t) is N deposition at time t (eq/m2/yr). 

2.3.2.8  SUMO 

SUMO (Wamelink et al., 2009) distinguishes six vegetation types (grassland, heathland, 

reedland, shrub vegetation, salt marsh and forest). Each functional type is assumed to 

consist of three organs: root, stem, and leaf. SUMO calculates biomass growth, death and 

removal of biomass in view of vegetation management. The model equations are 

parametrized for each combination of functional plant type and vegetation type. Much 
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attention is given to the simulation of competition between the functional types. The 

competition for nitrogen The competition for nitrogen and light is assumed to be the driving 

force for succession. The initial vegetation type is given as input to the model. Apart from 

biomass growth, SUMO also simulates height growth.  

For the functional types herbs/grasses, dwarf shrubs, and shrubs, SUMO simulates the total 

biomass of all species. For the functional types pioneer tree and climax tree the biomass of a 

specific tree species is simulated. Each species is given its own set of parameters. The pool 

of tree species consists of Scots pine (Pinus sylvestris), larch (Larix decidua), Douglas fir 

(Pseudotsuga menziesii), Norway spruce (Picea abies), birch (Betula pendula and Betula 

pubescens), ash (Fraxinus excelsior), alder (Alnus glutinosa), willow (Salix alba and Salix 

cinerea), poplar (Populus spec.), oak (Quercus robur and Quercus petrea), northern red oak 

(Quercus rubra) and beech (Fagus sylvatica).  

SUMO simulates the C and nutrient fluxes (N, P, K, Ca, Mg). The nitrogen that becomes 

available through mineralization (simulated by VSD
+

) and atmospheric deposition is 

partitioned over the functional types and within each functional type over its organs, using 

fixed percentage distributions per functional type/vegetation type combination. Nitrogen 

reallocation before litterfall is also simulated. 

Biomass  

The biomass of each functional type is computed as the result of the biomass in the previous 

year, the newly formed biomass, the production of dead biomass and the amount of biomass 

removed by management. The newly formed biomass is the result of the reduction of the 

maximum growth of each functional type by the reduction factors for light interception and 

nitrogen availability. Each year, a small amount of biomass is added to each organ of each 

functional type to simulate seed input (0.0001 ton ha
-1

 y
-1

). For several processes in SUMO 

the amount of biomass per organ is required. To this end the newly formed biomass is 

divided over the organs, where the division over the three organs differs per functional type. 

As with total biomass, the biomass per organ is corrected for death and biomass removal. 

Litterfall 

Each year part of the biomass dies. The fraction that dies depends on the organ and the 

functional type, and varies from 1.0 y
-1

 for leaves of herbs, shrubs and deciduous trees to 

0.01 y
-1

 for stems of climax trees. The nitrogen content in litter and dead wood is lower than 

in living material due to reallocation. However, when the nitrogen content drops below a 

given threshold value no reallocation takes place. The biomass of dead roots and leaves is 

transferred to the litter pool and nitrogen release from the dead plant parts is simulated by 

VSD
+

. VSD
+

 assumes that dead stems do not release nitrogen. 

Nitrogen uptake 

The influence of the nitrogen availability on the growth of each functional type is described 

by a saturation equation based on potential growth, total nitrogen availability, and the 

minimum nitrogen content per functional type. In principle, all available nitrogen is taken up, 

but the nitrogen uptake of each functional type is limited by its maximum growth and 

maximum nitrogen content. The nitrogen that is not taken up by the roots remains in the 

soil. 

2.3.2.9 Hydrology 

The hydrology is input to the VSD
+

 model. Yearly or a constant percolation, i.e. the water that 

is leaving the soil compartment (m/yr) is needed and a volumetric water content to calculate 

pools for the mass balance. These values can be obtained by any hydrological model. 
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2.3.3 Initialisation 

For the initialisation of soil organic matter content over the five C pools, the inert organic 

matter pool (IOC) is calculated according:  

𝐼𝑂𝐶 = 0.026. 𝑆𝑂𝐶𝑖𝑛𝑖
1.139. 100−0.139

 (18) 

where SOC
ini

 is the user provided initial total soil organic carbon content (g m
-2

). Next, the 

other C pools are initialised by assuming steady state for DPM, RPM and BIO. For DPM and 

RPM first year inputs are added to the steady state amounts. The C:N ratio of DPM is 

calculated from the N in incoming plant material (N
lf

) and the C:N ratio of HUM is calculated 

from the total amount of N in the soil, calculated from the user provided C:N and total soil 

organic carbon content of the soil, and the C:N ratios of the other C pools. 

The initial stem biomass is computed as a function of the user provide stand age.  

The initial soil moisture content is calculated by an iterative procedure assuming that the 

initial amount of soil water equals one-third of the annual precipitation (Bonten et al., 2016). 

2.3.4 Model outputs 

2.3.4.1 GrowUp 

The model output consists of: 

 Annual organic C and N input to the soil, which is the total of litter fall, fine root 

turnover and residues from cutting or thinning (g m
-2

 yr
-1

) 

 Annual storage of N, Ca, Mg and K in biomass (e.g. woody biomass on site, or harvested 

material) (eq m
-2

 yr
-1

) 

2.3.4.2 VSD+ 

Model outputs concern saturation of Ca, Mg, K, Al, and H at the exchange complex, the five 

organic matter pools, N fluxes like mineralisation, leaching, (de)nitrification and further on 

the concentrations of all elements in soil solution (Figure 15) 
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FIGURE 15 SELECTION POSSIBILTIES OF VSD
+

 MODEL OUTPUTS  

 

 

2.4 Comparison 

2.4.1 General Overview  

Here we present an overview table comparing the principal characteristics of both models 

(Table 2). An overview of the input data of both models is given in Appendix I. 

TABLE 2 OVERVIEW OF THE PRINCIPAL CHARACTERISTICS OF THE PROPE AND SUMU-VSD+ MODELS 

Topic PROBE (CENTURY-SWAP-ORCHESTRA) 

1) 

SUMO-VSD
+ 

Ecosystems Terrestrial ecosystems, originally 

developed for agricultural croplands, 

but now also applicable for natural 

grasslands, forests, and savannah. 

Validations both for grasslands and 

forests. 

Terrestrial Ecosystems, like forest, 

heath and grassland. Most validations 

on forest. 

User interface A simple user interface for a single 

point application 
2)

 

For single point application easy user 

friendly interface. For multi-site 

application the VSD+ dll can be built in 

in a user program.  

Computation time Intermediate (a few minutes for a site 

for a simulation of ca. 50 years) 
3)

 

Very short, within one minute for the 

whole of Netherlands (at 250 m by 250 

m resolution) 



 KWR2017.053 | June 2017 39  

 

 

Comparison of model concepts for nutrient availability and soil acidity in terrestrial ecosystems 

 

Topic PROBE (CENTURY-SWAP-ORCHESTRA) 

1) 

SUMO-VSD
+ 

Type of input data CENTURY: 9 field for initial values of 

state variables of soil 

11 site-specific parameters (soil) 

Many fixed parameters 

Many vegetation-specific parameters 

SWAP: Daily climate data of 4 variables 

Ca. 10 site-specific parameters for each 

soil layer.  

ORCHESTRA: Many site-specific input 

data for element concentrations 

 

VSD
+

: 52 fields with input data and 

parameters, of which 6 variables need 

yearly values during the simulation 

period.  

GrowUp: 31 fields with input data and 

parameters 

SUMO: 8 fields with site specific 

information. Many fixed parameter 

values are given in 9 separate input 

files 

Time scale Time steps of one day. Developed for 

long term effect (e.g. for centuries). 

Time step of one year. Developed for 

long term effects (up to 1000 years) 

Space scale 

(horizontal) 

Point
 4)

 Point, but also applied on European 

scale as an ensemble of multiple 

points. 

Spatial scale 

(vertical) 

Three soil layers (with user-specified 

depth) for the SOM module. Many soil 

layers (user-specific) for hydrology and 

pH module. Soil organic matter is 

simulated only in the top layer. 

One soil layer including an organic part 

and mineral part 

Processes   

Carbon pools 4 (grassland) or 7 (forest) litter pools: 

 
 
Surface metabolic* 

  Surface structural* 

  Belowground metabolic* 

  Belowground structural* 

  Dead fine branches 

  Dead large wood 

  Dead coarse roots 

 

4 soil pools: 

 Soil surface microbe 

 Active pool 

 Slow pool 

 Passive pool 

2 litter pools: 

 Decomposable Plant Material (DPM) 

 Resistant Plant Material (RPM) 

 

 

 

 

 

3 soil pools:  

 Microbial biomass (BIO) 

 Humified organic matter (HUM) 

 Inert organic matter (IOM) 

Decomposition 

formulation 

1st order, rates are affected by 

moisture, temperature, soil texture, 

nutrient limitation, and lignin content 

1
st

 order, rates are affected by moisture 

and temperature  

Mineralisation 

elements 

C, N, (P) C, N 

Base cations implicit (all are available 

after litter fall) 

Nitrification 1
st

 order, rate affected by temperature, 

moisture, and pH 

1
st

 order, rate affected by temperature, 

moisture and pH 

Denitrification A slightly deviated 1
st

 order, rate is 

affected by labile C availability and 

moisture. 

1
st

 order, rate affected by temperature, 

moisture and pH 

Plant uptake Explicitly calculated. Plant growth is Model input for VSD+, provided by 
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Topic PROBE (CENTURY-SWAP-ORCHESTRA) 

1) 

SUMO-VSD
+ 

affected by temperature, moisture, 

nutrient availability, and shading. 

GrowUp or in feed-back with nutrient 

availability calculated by SUMO 

Leaching Percolation × concentration Percolation × concentration 

N fixation Asymbiotic N fixation: model input 

Symbiotic N fixation: provides N for 

plants when mineral N in soil is not 

enough to support all potential plant 

growth, with a maximum rate 

Model input 

Exchange Dzombak-Morel model for hydrous 

ferric oxide, NICA-Donnan model for 

Humic acid and Fulvic acid, Donnan 

model for clay 

Gaines-Thomas or Gapon 

Process order  

N processes 

1: Organic N input (litter fall) 

2: Mineralisation/immobilisation 

3: Nitrification 

4: Denitrification 

5: Deposition + asymbiotic fixation 

6: plant uptake 

7: Leaching 

1: Deposition + Fixation + organic N 

input (litter fall) 

2: Mineralisation/immobilisation + 

uptake 

3: Nitrification 

4: Denitrification 

5: Leaching 

Process order  

pH processes 

1. Net input/output fluxes 

2. Transport between layers 

3. Equilibrium calculations, 

de/adsorption, weathering, CO
2

 

diffusion 

1: Net input fluxes: Deposition, 

weathering, uptake, (de)nitrification 

2: Concentrations 

3: Base saturation and de/adsorption 

SO
4

 and PO
4

 for next year 

pH effect Nitrification (Figure 22 left) Nitrification (Figure 22 left) 

Denitrification (Figure 22 right) 

Moisture effect Plant production (Figure 16 left) 

Plant death (Figure 16 right) 

SOM decomposition (Figure 17) 

Nitrification (Figure 18) 

Denitrification (Figure 19) 

Plant production (only with SUMO) 

(Figure 16 left) 

SOM decomposition (Figure 17) 

Nitrification (Figure 18) 

Denitrification (Figure 19) 

Temperature effect Plant production (Figure 20 top right) 

 

SOM decomposition (Figure 20 top left) 

Nitrification (Figure 20 bottom left) 

Plant production (only with SUMO) 

(Figure 20 top right) 

SOM decomposition (Figure 20 top left) 

Nitrification (Figure 20 bottom left) 

Denitrification (Figure 20 bottom right)) 

Soil texture effect SOM decomposition rate (Figure 21 

bottom) 

C flow to slow and passive pool (Figure 

21 top left) 

 

 

 

C flow to microbial biomass and humus 

(Figure 21 top right) 

 

1) 

The descriptions of the PROBE model are of PROBE-2.2 (for pH) and of PROBE-3 (for the 

rest). 

2)

 PROBE-2.1 is more elaborated, use-friendly interface. This can be adapted for later 

versions. 

3)

 PROBE-2.1 has much faster computation time due to their use of transfer functions. This 

method can be potentially applied for the later versions of the model. 

4)

 PROBE-2.1 is to be applied for a landscape to national level. 
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2.4.2 Comparison of functional relationships 

Below we visualize the difference in functional relationships between abiotic factors and 

process rates between the two models. See section 2.2.2 and 2.3.2 for details about each 

process. In section 2.4.3 a brief discussion is given on the included reduction functions. 

2.4.2.1 Effect of moisture and temperature 

Soil moisture influences plant growth in both CENTURY and VSD+, whereas soil moisture 

influences plant death only in CENTURY (Figure 16).  

Further, soil moisture influences decomposition rate (Figure 17), nitrification rates (Figure 

18), and denitrification rates (Figure 19) in both CENTURY and VSD+. The reduction functions 

are comparable, except that only CENTURY includes reduction effect under wet conditions 

(Figure 17). 

Effects of temperature on decomposition and nitrification rates are similar between CENTURY 

and VSD+ (Figure 20). Temperature effects on plant growth are similar between the two 

models in lower temperature range, whereas in higher temperature range only CENTURY has 

a hampering effect. Temperature effects on denitrification are included only in VSD+. 

FIGURE 16 EFFECT OF MOISTURE ON PLANT GROWTH (LEFT) AND PLANT DEATH (RIGHT) IN CENTURY AND 

SUMO. X-AXIS FOR CENTURY IS ACTUAL TRANSPIRATION DIVIDED BY POTENTIAL TRANSPIRATION, WHICH 

WERE COMPUTED IN THE HYDROLOGIAL MODULE SWAP. X-AXIS FOR SUMO IS ACTUAL 

EVAPOTRANSPIRATION DIVIDED BY POTENTIAL EVAPOTRANSPIRATION. SUMO DOES NOT INCLUDE 

MOISTURE EFFECT ON PLANT DEATH. THE ORIGINAL FUNCTION OF CENTURY WAS ADJUSTED BY FUJITA ET 

AL. (2015). 

  

FIGURE 17 EFFECT OF MOISTURE ON DECOMPOSITION IN CENTURY AND VSD+ FOR SAND (‘BOUWSTEEN’ 

B1, LEFT), CLAY (‘BOUWSTEEN’ B11, MIDDLE) AND PEAT (‘BOUWSTEEN’ B15, RIGHT). X-AXIS IS 

VOLUMETRIC WATER CONTENT. THE ORIGINAL FUNCTION OF CENTURY WAS ADJUSTED BY FUJITA ET AL. 

(2013) . 
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FIGURE 18 EFFECT OF MOISTURE ON NITRIFICATION IN CENTURY AND VSD
+ 

FOR SAND (‘BOUWSTEEN’ B1, 

LEFT), CLAY (‘BOUWSTEEN’ B11, MIDDLE) AND PEAT ((‘BOUWSTEEN’ B15, RIGHT).
 

 
  

FIGURE 19 EFFECT OF MOISTURE ON DENITRIFICATION IN CENTURY AND VSD+ FOR SAND (‘BOUWSTEEN’ 

B1, LEFT), CLAY (‘BOUWSTEEN’ B11, MIDDLE) AND PEAT ((‘BOUWSTEEN’ B15, RIGHT). 

 

 

 
 

FIGURE 20 EFFECT OF TEMPERATURE ON PLANT GROWTH IN CENTURY AND SUMO (LEFT TOP) AND ON 

DECOMPOSITION (TOP RIGHT), NITRIFICATION (BOTTOM LEFT), AND DENITRIFICATION (BOTTOM RIGHT) 

IN CENTURY AND VSD+. FOR THE SAKE OF COMPARISON, THE FUNCTIONS OF SUMO AND VSD+ WERE 

STANDARDIZED FOR CENTURY AT THE REFERENCE TEMPERATURE OF 15 °C. CENTURY USES DAILY 

AVERAGE SOIL TEMPERATURE OF TOP SOIL (WHICH IS COMPUTED IN HYDROLOGICAL MODULE SWAP), 

WHILE SUMO AND VSD+ USE YEARLY AVERAGE AIR TEMPERATURE. 
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2.4.2.2 Effect of soil texture 

In both CENTURY and VSD+, a higher clay fraction decreases the fraction of decomposed C 

that is released as CO2, yet the effect was much stronger in CENTURY (Figure 21 top). Only 

CENTURY includes the effect of soil texture on decomposition rate (Figure 21 below).  

FIGURE 21 EFFECT OF SOIL TEXTURE ON FLOW RATE OF DECOMPOSED CARBON INTO DIFFERENT CARBON 

POOLS IN CENTURY (TOP LEFT) AND VSD+ (TOP RIGHT), AND ON DECOMPOSITION RATE OF THE ACTIVE 

CARBON POOL IN CENTURY (BOTTOM). 
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2.4.2.3 Effect of soil pH 

Soil pH influences nitrification both in CENTURY and VSD+ (Figure 22 left). The effect of soil 

pH on denitrification is included only in VSD+ This means that the reduction values is always 

1 (Figure 22 right). 

FIGURE 22 EFFECT OF PH ON NITRIFICATION IN CENTURY AND VSD+ (LEFT) AND ON DENITRIFICATION IN 

VSD+ (RIGHT). 

  

2.4.2.4 Effect of soil/litter quality 

In VSD+, soil N:C ratio does not influence soil decomposition rate, whereas in CENTURY a low 

N:C ratio of soil and litter inhibits decomposition (Figure 23 left). Both in VSD+ and in 

CENTURY, soil and litter N:C ratio influence the amount of N mineralized per unit C 

decomposed (Figure 23 right), with N-rich substrate releasing more N via mineralization. 

Additionally, in CENTURY, lignin content of litter influences decomposition rates and flow 

rates of decomposed C between pools. In VSD+, so-called ‘litter quality index’, which is a 

constant parameter value and is different among vegetation types.  

FIGURE 23 EFFECT OF SUBSTRATE (I.E. SOIL OR LITTER) N:C RATIO ON RELATIVE DECOMPOSITION RATE 

(I.E. C DECOMPOSITION RATE PER DAY DIVIDED BY TOTAL C POOL) AND RELATIVE N MINERALISATION 

RATE (I.E. N MINERALIZATION RATE PER DAY DIVIDED BY TOTAL C POOL) IN CENTURY AND VSD+.  
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2.4.2.5 Effect of soil N availability/atmospheric N deposition on plant N 

concentration 

Both in CENTURY and VSD+, N concentration in plant changes dynamically, yet with different 

mechanisms.  

In CENTURY, both plant production and plant N concentrations are influenced by soil 

available N (i.e. N-NO3 and N-NH4). As soil available N increases, actual daily plant 

production (P
act

) increases up to potential plant production (P
pot

: plant production determined 

by other factors than nutrients, i.e. moisture, temperature, and shading). After that level, N:C 

ratio in newly-assimilated plant biomass increases until N:C ratio reaches the maximum 

value (Figure 24 left). The maximum and minimum N:C ratio is different for shoots and roots, 

and is a function of size of plant for shoot. 

In VSD+, soil available N is not explicitly used to determine N concentration in plants. 

Instead, annual atmospheric N deposition rate is used to approximate N availability for 

plants. Similar to CENTURY, leaf N concentration increases as N deposition increases until 

the vegetation-specific maximum N concentration level (Figure 24 right). An important 

difference is that plant production is not influenced by N level in VSD+.  

FIGURE 24 EFFECT OF N AVAILABILITY ON PLANT N CONC ENTRATIONS IN CENTURY (LEFT) AND VSD+ 

(RIGHT). MAXIMUM AND MINIMUM VALUES OF N:C RATIO OR N CONCENTRATIONS ARE VEGETATION TYPE 

SPECIFIC FOR BOTH MODELS. IN CENTURY, ACTUAL PLANT GROWTH (P
ACT

) EQUALS POTENTIAL PLANT 

GROWTH (P
POT

) AFTER SOIL AVAILABLE N EXCEEDS A CERTAIN LEVEL, ABOVE WHICH PLANT N:C RATIO 

LINEARLY INCREASES. 

 
 

 

2.4.3 Discussion on used reduction functions 

In addition to the effect on species diversity it is important to consider that the pH influence 

on soil microbiology cannot be seen independently of the pH influence on plant growth and 

rhizosphere ecology as they influence the supply and quality of organic matter, i.e. the 

source of the material to be decomposed (Kemmitt et al., 2006; Pietri & Brookes, 2009). The 

same is true for temperature and moisture content. E.g. Falkengren-Grerup et al. (1998) 

showed that nitrogen deposition increases the rate of both mineralisation and nitrification. 

In general the used reduction functions in both models are quite comparable. Some of the 

effects are not included in a model but in the other (e.g. temperature effect on plant death, 
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pH effect on denitrification). The difference between models are relatively large in wet 

conditions and on clay soils. However, these reduction equations can be easily added or 

replaced without changing model structure. To make a choice on which equation to include 

in the model, we still need empirical data and knowledge which rationalize the choice. 

Notable differences exist for the effect of soil and litter quality and the effects of soil 

available N. CENTURY takes more process-based approach to reflect these effects. These 

effects are not easily replaced since it requires changes in model structure (i.e. increases in 

state variables) or requires different time scale. 

2.4.4 Comparison of model capacity 

We evaluate the possibilities of both models to simulate responses to drivers and factors 

which are relevant to simulate scenarios on target ecosystems in the context of WWN (Table 

3).  

 TABLE 3 COMPARISON OF VSD+ AND PROBE (CENTURY-SWAP-ORCHESTRA) FOR THEIR CAPACITY TO 

SIMULATE RESPONSES TO DRIVERS AND FACTORSIN VIEW OF NUTRIENT AVAILABILITY AND PH 

Responses to 

drivers/factors for each 

scenario 

Relevance for 

WWN 
1) 

VSD+ 

 

PROBE Note 

 Nut. 

availa

bility 

Soil 

pH 

Already 

included 

Easy to 

include 

Already 

included 

Easy to 

include 

 

1.Responses to drivers/factors for each scenario 
 

Climate change scenarios        

 Temperature effect on SOM 

decomposition 

++  Y  Y   

 Temperature effect on plant 

growth / litter production 

++  N Y (using 

SUMO) 

Y   

 Temperature effect on nitrification - + Y  Y   

 Drought effect on SOM 

decomposition 

++  Y  Y   

 Drought effect on plant growth / 

litter production 

++  N Y (using 

SUMO) 

Y   

 Drought effect on plant death +  N Y Y   

 Drought effect on nitrification -  Y  Y   

 Drought effect on denitrification +  Y  Y   

 Oxygen stress effect on SOM 

decomposition 

++  N Y 
2)

 Y   

 Oxygen stress effect on 

nitrification 

-  Y  Y   

 Effect of redox status on base and 

P chemistry 

+ ++ N N 
3)

 N N? 
3) 

 

 Effect of short but extreme 

weather event on SOM 

decomposition 

?  N N 
4) 

Y   

 Effect of short but extreme 

weather event on plant death 

+  N N Y  
5) 

 Effect of short but extreme 

weather event on groundwater 

flows 

- ++ N? Y Y   
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Responses to 

drivers/factors for each 

scenario 

Relevance for 

WWN 
1) 

VSD+ 

 

PROBE Note 

 Nut. 

availa

bility 

Soil 

pH 

Already 

included 

Easy to 

include 

Already 

included 

Easy to 

include 

 

        

Atmospheric N deposition scenarios        

 Effect of N deposition / soil 

mineral N on plant C:N 

++  Y  Y   

 Effect of N deposition / soil 

mineral N on plant production 

+  N Y (using 

SUMO) 

Y   

 Effect of litter and soil C:N on N 

mineralization rate 

+  Y  Y   

 Effect of soil mineral N on 

decomposition rate 

+  N N 
4) 

 Y   

        

Management scenarios        

 Effect of groundwater level on soil 

moisture 

++ + Y  Y   

 Effect of mowing, thinning, and 

cleaning on plant biomass  

+  N Y (using 

SUMO) 

Y   

 Effect of grazing on plant biomass   N N? N Y 
6)

  

        

2.Responses to factors for specific ecosystems
 

Groundwater-dependent ecosystems        

 Effect of groundwater level on soil 

moisture 

++ + Y  Y   

 Effect of groundwater recharge on 

soil water chemistry 

 + N Y Y   

Clay – sandy ecosystems        

 Effect of soil texture on microbial 

yield efficiency 

+  Y  Y   

 Effect of soil texture on C 

partitioning 

-  N N Y  
7) 

 Effect of soil texture on 

decomposition rate 

+  N Y Y   

(Low productive) grasslands        

 Effect of nutrient limitation on 

plant growth 

+  N Y (using 

SUMO) 

Y  
8) 

Heathlands       
 

 Competition between trees and 

grasses 

+  N Y 
9) 

(using 

SUMO) 

Y   

1) 

Relevance for WWN was evaluated as ++: very relevant, +: relevant, -: indirectly relevant 

2)

 By adjusting the reduction function 

3)

 Lots of extra elements need to be added 

4)

 Smaller time step is needed 

5) 

‘Oxygen stress ’ module can tackle the effects of extreme event on plant species properly, but not on 

plant death (and contaminant increase in litter input) 

6)

 Original CENTURY has a set of equations for grazing 

7)

 Otherwise, proper initial partitioning of C pools can tackle this issue 

8)

 Nutrient limitation may also be important in forest ecosystems (but to a lesser extent) 

9)

 Functions of SUMO need to be modified in this regard 
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2.4.5 Strong and weak points 

Here we summarize the strong and weak aspects of both model chains in view of modelling 

soil acidity and nutrient availability. 

 PROBE (CENTURY-SWAP-ORCHESTRA) 

Strong points of PROBE (CENTURY-SWAP-ORCHESTRA) are: 

 Effects of nutrient limitation and C:N:P stoichiometry on plant growth and 

decomposition are explicitly included 

 Dynamic feedback between plant, soil, and hydrology 

 Small time step, which enables including temporal aspects, such as seasonality of rain 

water lenses in areas with upwelling alkaline groundwater, effect of short weather events, 

and management options 

 Explicit inclusion of groundwater influence and carbonate chemistry in pH module 

 

Weak points of PROBE (CENTURY-SWAP-ORCHESTRA) are: 

 Rather complex with many input (parameter) values 

 High computational load 

 pH module is not robust for all combinations of input values 

 pH module is not coupled with N dynamics in SOM module 

VSD+ 

Strong points of VSD+ are: 

 Relative simple; Relative low data demand 

 Includes all macro ions (a complete charge balance) 

 Dynamic interaction between pH and biochemical processes. 

 With SUMO, it is possible to simulate interactions between soil and vegetation growth 

and effects of vegetation management like sod cutting and mowing 

 Low computational load when applied without SUMO 

 Easy to apply (due to link with national database and user friendly user interface) 

 Includes P sorption 

Weak points of VSD+ are: 

 C:N ratio of various soil pools constant 

 P-mineralisation not yet included 

 Combination with SUMO not thoroughly validated 

 When combined with SUMO, the number of necessary input values increases a lot 

 No seasonal effects due to yearly time step 

 No redox 
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3 Available datasets for model 

parametrization and validation 

For the application of the process-based model for a wide range of situations in the 

Netherlands, we have to assign parameter values to characterise soil- and functional 

vegetation types. For the parametrization, we need physical and chemical data of soil- and 

vegetation types.  

For the validation of the process-based model we need time series of measured soil 

processes, contents, concentrations and pools of the main elements. 

3.1 Datasets for model parametrization 

An overview of available dataset for the parametrization is given in Table 4. An extensive 

overview of the content of each dataset is given in Appendix II. The first 9 datasets are 

stored in one access database. The dataset ‘HUMBASE’ (Van Delft, 2001; Van Delft et al., 

2012; Van Delft, 2013) includes 1864 soil profiles gathered in heathland and grassland, of 

which a majority is for agricultural use. A selection of ‘nature’ sites with chemical analyses 

(296 sites) was made for KWR. That part is described here. Note that the considered datasets 

also contain model output, but only during one time. The lack of time series make them 

unsuitable for model validation. 

TABLE 4 OVERVIEW OF POTENTIAL DATASETS FOR PARAMETRIZATION. 

Name/Ref Monitoring 

Characteristics 

Type of measurement Elements included 

(De Vries & 

Leeters, 2001) 

150 forest sites 

sampled once in 1990 

Soil, soil solution and 

vegetation  

All major elements and 

pH 

(De Vries et al., 

1995) 

12 forest sites on non-

calcareous soils 

sampled once in 1992 

Soil, soil solution and 

vegetation  

All major elements and 

pH 

(De Vries, 1993) 48 forest sites on sandy 

soils (calcareous and 

non-calcareous) 

sampled once in 1992 

Soil, soil solution and 

vegetation  

All major elements and 

pH 

(Klap et al., 

1999b) 

40 forest sites on loess 

soils sampled once in 

1992 

Soil, soil solution and 

vegetation  

All major elements and 

pH 

(Klap et al., 

1999b) 

30 forest sites on clay 

soils sampled once in 

1992 

Soil, soil solution and 

vegetation  

All major elements and 

pH 

(Klap et al., 

1999b) 

30 forest sites on peat 

soils sampled once in 

1992 

Soil, soil solution and 

vegetation  

All major elements and 

pH 

(Klap et al., 

1999a) 

63 grassland and forest 

sites in the Drentse Aa 

region sampled in 1994 

Soil, soil solution and 

vegetation  

All major elements and 

pH 

(Leeters & de 200 forest sites on non- Soil, soil solution and All major elements and 
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Vries, 2001) calcareous soils 

sampled once in 1995 

vegetation  pH 

HUMBASE 296 grassland, heath 

and forest sampled 

once in the period 1990 

– 2013 

Soil solid phase  All major elements, pH 

and C and N pools 

(Fujita et al., 

2013) 

36 Grasslands, heath, 

sampled once in 2011
 

Soil, vegetation
 

C, N, P, pH
 

(Ordonez et al. 

2010) 

51 grasslands, shrubs, 

forests, sampled once
 

Soil, vegetation
 

C, N, P, pH
 

(Olde Venterink et 

al., 2002) 

47 grasslands Soil, vegetation C, N, P, pH 

 

3.2 Datasets for model valdation  

inventories at 10 sites with time series that are in principle suitable for model validation as 

given in Table 5. An extensive overview of the content of those datasets is given in Appendix 

III. 

TABLE 5 OVERVIEW OF POTENTIAL DATASETS FOR VALIDATION. 

Name/location Data type Vegetation 

structure
 

Measurements
 

Reference 

Speulderbos monthly or weekly 

monitoring (1990-

1995) 

forest
 

Soil pore water (major 

elements, pH)
 

Deposition
 

Van der Salm 

et al. (1998) 

Risdalheia Yearly
*1

 monitoring 

1984-1997 

forest
 

Soil pore water (major 

element)
 

Mineralization 
 

Nitrification
 

Litterfall
 

Plant nutrient (N, K, Ca, Mg)
 

Deposition
 

Mol-Dijkstra 

and Kros 

(2001) 

OBN Sites Monthly monitoring 

in 1999, 7 sites 

grassland
 

Soil pore water (major 

elements)
 

Grobben et al., 

(unpublished 

data) 

(Kemmers, 

1999; 

Kemmers et 

al., 2000) 

Veenkampen Monitoring 1983-

2006 

grassland Soil C & N & P & K pool
 

Soil pore water (major 

elements)
 

Plant biomass, N & P & K 

content
 

Mol et al., 

(unpublished 

data) 

Hulshorsterzand Chronosequence, 

measured in 1993-

1994 

Bare soil to 

forest 

Soil C & N pool
 

Plant biomass
 

Plant species composition 

(Wamelink et 

al., 2001)  

Sellingen Chronosequence , 

measured in 1999 

forest
 

Soil pore water (major 

elements)
 

Soil C & N pool
 

Plant biomass & nutrient 

content
 

 

(Wamelink et 

al., 2001) 

ECN database, 

UK 

1992-2011, 12 sites 

(ca. 100 plots) 

Grassland, 

forest
 

meteo (hourly)
 

deposition (weekly)
 

soil solution chemistry (bi-
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weekly)
 

vegetation surveys
 

Luchterduinen Chronosequence, 

measured in 2012, 

110 sites
 

Bare soil to 

grassland
 

Soil C & N pools
 

pH
 

Plant species composition 

Plant biomass
 

(Aggenbach et 

al., 2013b) 
 

Hoge Veluwe Monthly monitoring 

3 lysimeter (2016 – 

2018)
 

Heath
 

Leachates (N-NO3, N-NH4, 

DON, P-PO4) 

Meteo 

Soil pore water (N-NO3, N-

NH4, DON, P-PO4)  

Soil C & N & P pool 

Plant biomass, N & P content 

N dry deposition
 

Fujita et al., 

unpublished
 

Castricum Monthly monitoring 

4 lysimeters, 1941-

1999
 

Bare, 

grassland, 

forest
 

Leachates (Major elements)
 

Meteo
 

Deposition
 

(Stuyfzand & 

Rambags, 

2011)& 
 

*1: 

Some of the variables were measured more often than yearly interval. 

3.2.1 Speulderbos 

The Speulderbos was in 1998 a 40 year old Douglas fir stand in the Netherlands (planted). 

The soil is sandy loam (Boxman et al., 1995; Van der Salm et al., 1998). In 1989, a 2-3 m 

high transparent roof was erected to intercept throughfall before it reached the forest floor. 

Part of the roofed area received ambient deposition, whereas the other part received 

deposition with pristine amounts of N and S. Until 1992 the collected throughfall was 

sprinkled every two weeks. This system was replaced by an almost real time watering in 

February 1992. A complete description of the experimental design and the monitoring 

program is given in Boxman et al. (1995). Ceramic lysimeter cups were installed in the 

mineral soil of each plot at depths of 10 cm (eight replicates), 25 cm (four replicates), 45 cm 

(four replicates) and 90 cm (four replicates). Boxman et al. (1995) only analysed the 

averaged value of the replicates and paid no attention to the strong spatial variation among 

the replicates. Van der Salm et al. (1998), however, calculated 95% confidence intervals per 

plot for each observation date from 1990-1994 and found strong fluctuations in soil solution 

between the individual cups in both the roofed plot with ambient and with pristine 

deposition. The coefficient of variation ranged between 30 and 150%. Accordingly, the 95% 

confidence interval around the measurements was rather broad, especially in dry periods 

when no soil solution could be extracted from some of the cups. Moreover, the lack of soil 

solution data from these cups, situated in the dryer part of the plot, may lead to an 

underestimation of the average concentrations during these dry periods. 

3.2.2 Risdalsheia 

Risdalsheia is located near Grimstad, southern Norway, (58°23’N, 8°19’E) at 300 m above sea 

level (Wright et al., 1998a). The site is representative of large areas of upland southern 

Norway. Mean annual precipitation is 1400 mm, runoff is 1200 mm and mean annual 

temperature is 5°C (mean of –3°C in January and +16°C in July). Vegetation is mainly a sparse 

cover of pine (Pinus sylvestris L.) and birch (Betula pubescens L.) with heather (Calluna 

vulgaris L.) and blueberry (Vaccinium myrtillus L.) as dominant ground species. Risdalsheia 

receives relatively high levels of acid deposition with mean values for 1984–1992 of 113 

meq S m
-2

 yr
-1

 and 132 meq N m
-2

 yr
-1

 (Wright et al., 1993). 

3.2.3 OBN, 7 locations on (relatively) wet ecosystems 

Seven research plots of OBN at wet grasslands all over the Netherlands were used for a 

validation of SMART2 (not published). Many soil properties were measured, but soil solution 

concentrations only for one year. 



 KWR2017.053 | June 2017 52  

 

 

Comparison of model concepts for nutrient availability and soil acidity in terrestrial ecosystems 

 

3.2.4 Veenkampen 

The Veenkampen is a research site located between Wageningen and Veenendaal. The soil 

consists of a clayey topsoil on peat. At the beginning of the twentieth CENTURY the 

vegetation consisted of a species rich grassland vegetation, but after 1945 is the area 

drained and levelled for agriculture. From 1968 to 1978 was the annual fertilization 300 kg 

N, 33 kg P and 125 kg K. Since 1978 is the fertilization stopped and mowed twice each year. 

In 1986, rewetting experiments began and the plot was divided in a dry part, with the same 

hydrological regime as the surrounding plots, and a wet part. Those two parts were 

subdivided into different parts with different types of management were applied. 

3.2.5 Hulshorsterzand 

This dataset is based on a chronosequence from bare soil to forest of a nutrient poor 

ecosystem (Berendse, 1998; C. G. F. De Kovel, unpublished data) located in the Leuvenumse 

Bos (52°20’’ N, 5°44’’ E). The substrate in these areas consists of unconsolidated calcium-

poor material of fluvio-glacial origin with a thin cover of aeolian deposits. Vegetation 

development in such inland dune areas can be considered as primary succession. Within 

these areas, different parts (sites) have been colonized by vegetation at different times in the 

past, so that different stages of succession coexist. Since the substrate is homogeneous and 

spread over large areas, different sites with different stages of succession form a 

successional chronosequence. Each site, though, has its own history of atmospheric 

deposition. 

3.2.6 Sellingen 

This dataset is based on a Chronosequence of oak forest on former agricultural land, Eastern 

Groningen (in the neighbourhood of Sellingen). The oaks were planted as 3-year old seedlings on 

ploughed soil. The original number of seedlings is unknown. The sites were extensively managed and 

weed-control or thinnings have not been carried out. At the time of the measurements the stands were 

4, 8, 11 and 18 years old (Van der Salm et al., 2006). The stands were located close to the village of 

Sellingen (52°56″N, 7°05″E) in the northeastern part of The Netherlands. The oaks were planted as 3-

year old seedlings on ploughed soil. The original number of seedlings is unknown. The sites were 

extensively managed and weed-control or thinnings have not been carried out. At the time of the 

measurements the stands were 4, 8, 11 and 18 years old. The stands were located close to the village 

of Sellingen (52°56″N, 7°05″E) in the northeastern part of The Netherlands. Rainfall, throughfall, soil 

water contents, groundwater level and the water level of the ditches was measured once a month from 

June 2001 to January 2003. Throughfall was measured using 10 samplers at each site. The funnels 

(18 cm diameter) were placed in a cross in each stand at varying distances to the tree stems. Rainfall 

is collected in two open fields at approximately 500 m from the sites. Soil water contents were 

measured at three points in each site using plastic access tubes and a portable TDR probe. Soil 

solution was sampled using lysimeter cups made of polyester acrylat. Cups were installed at 10, 30 

and 90 cm depth. At each depth 15 lysimeter cups were placed at randomly selected sites within each 

plot  

3.2.7 ECN database UK 

We have obtained data of several plots in the UK. They all have a long complete time series 

of meteo (hourly), deposition (weekly), soil solution chemistry (bi-weekly) and vegetation 

surveys (about 100 plots). Table 6 gives an overview of the available time series. A 

description of the monitoring sites is given In Appendix III. Unfortunately, soil properties are 

not available in this set. 
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TABLE 6 TIME SERIES AVAILABLE IN ECN DATABASE. 

Sites Meteo Precipitation 

chemistry 

Solution 

chemistry 

Vegetation 

surveys 

 

Alice Holt 94-11 94-11 94-09 94  

Cairngorms 99-11 99-10 99-10 98-99  

Drayton 93-11 93-10 94-09 93  

Glensaugh 94-11 93-10 93-10 94  

Hillsborough 93-95,01-09 94-09 94-10 94  

Moor House 92-11 92-11 92-11 93-94  

North Wyke 95-11 93-10 10 93-94  

Porton 92-12 online 94-10 96-99 91,94  

Rothamsted 93-11 92-11 94-11 93  

Snowdon 95-09 97-10 97-10 95,97-00  

Sourhope 93-11 93-10 93-10 93-94  

Wytham 92-11 93-12 93-10 93-94  

 

3.2.8 Lysimeters in Hoge Veluwe 

KWR installed six precision lysimeters in a heath stand in Hoge Veluwe. From three 

lysimeters, leachates from 50 cm depth are monthly collected for chemical analysis between 

December 2016 and spring of 2018. At the same sampling interval, soil pore water of 10 cm, 

25 cm, and 50 cm depth are also collected from nearby locations (N=3). In summer 2017, 

soil bulk properties (C & N & P pool) and plant properties (biomass, N & P content) will be 

measured. Next to the lysimeters, RIVM measures dry deposition of nitrogen.  

3.2.9 Luchterduinen 

Based on analysis of high-resolution aerophotographs, chronosequence of dune grasslands 

were built in lime-rich and lime-poor dunes in Luchterduinen. The chronosequence includes 

different ages of dune grasslands, ranging from 0 to 97 years old. Soil C and N pools, plant 

biomass (only for a part of the plot), and plant species composition were measured.  

3.2.10 Lysimeters in Castricum 

There exist long-term datasets of four lysimeters in Castricum. The dimension of the 

lysimeters is 25 x 25 x 2.5m. The vegetation in the lysimeters (at the time of the installation) 

is: bare sand, shrub, pine forest, and oak forest. Apart from measurements of meteorology 

and deposition, chemical properties of leachates were measured monthly. Measured items in 

the leachates are: SEC, pH, Cl, SO
4

, HCO
3

, NO
3

, NO
2

, PO
4

, Na, K, Ca, Mg, Fe, Mn, NH
4

, SiO
2

, 

KMnO4, colour (till 1961), NH4-album (till 1961), TOC (after 1980).  
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4 Discussion 

In general terms the two model chains are quite comparable. This was also found in other 

comparative studies. In a an overview paper on the use of dynamic soil–vegetation models to 

assess impacts of nitrogen deposition on plant species composition, De Vries et al. (2010) 

concluded that there are large similarities between those type of models (not including VSD+ 

and PROBE), particularly those based on survey data, but there are also several important 

differences, including: (1) use of different abiotic variables for N, such as N availability (such 

as VSD+ and PROBE), Ellenberg N indicators and soil-solution N, (2) prediction of individual 

plant species versus. plant communities, and (3) calibration based on different (national) soil 

and vegetation data sets. 

Nevertheless, there are clear differences exists between two reviewed modelling chains. In 

sequel of this section we address the following discussion points: 

- The background/origin of the discussion point 

- The consequences for the model results 

- The feasibility of changing/including the discussed item 

4.1 The included processes and elements in view of nutrient availability and pH 

Basically both modelling systems include most of the relevant processes. The main lacking 

processes or elements are: 

- P – only partly included both models 

- Cation exchange – only fully included in SUMO-VSD
+

 

The role of phosphorus in nutrient availability: To include chemical aspects of P is not a 

complicated task for oxic (dry) systems. Descriptions, and the corresponding data, to do this 

are available for agricultural systems (see e.g. Van der Salm et al., 2016), while limited data 

are also available for natural systems (De Vries & Leeters, 2001). However, this is only valid 

for oxic (dry) systems. Furthermore, the model validation presented in Van der Salm et al. 

(2016) has been limited to agricultural systems and it appeared that the included models did 

perform well under P excess, but not under P limited circumstances. For anoxic (wet) 

systems it is necessary to include reductions processes, which makes it more complicated 

The main challenge will be how to include the P availability. If we use mineralisation plus 

deposition as an indicator, than the inclusions of the soil chemical processes is of minor 

importance. Most of the P will be turned over though mineralisation. On the other hand, the 

adsorbed P might be a limiting factor for species diversity; see e.g. Sival and Chardon (2002), 

who showed that there is a relation between Pw and P-Al and biomass production and the 

N:P ratio in the vegetation. 

The role of cation exchange: For the regulation of the pH, especially within the pH range 

4.5-6.5, cation exchange is the most prominent process. So, it is obvious that there is a clear 

need to include cation exchange. Inclusion of cation exchange by using ORCHESTRA is, 

however, cumbersome (huge computational load limits the applicability). Beyond the 

relevance of inclusion as such, also how cation exchange is modelled is relevant. E.g. using 

either Kerr, Gapon or Gaines Thomas relationships. Validation on empirical pH-Base 

saturation relationships can help to identify the most suitable relationship.  
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4.2 The role of the calculation order of the modelled processes 

The most notable difference is that PROBE calculates nitrification and denitrification before 

uptake, whereas VSD calculates uptake first. This means that PROBE treats uptake as a 

slower, less efficient, process than nitrification and denitrification, while VSD+ assumes that 

uptake takes place first. The consequence of this choice on N availability and related cation 

availability and pH, depends on the used calculation time-step. At a larger time-step (VSD+), 

the process-order has a larger impact than at a smaller time-stem (PROBE). 

4.3 The used spatial and temporal scale 

Effect of spatial resolution can be distinguished in resolution in the vertical direction and the 

horizontal direction. Regarding the vertical resolution the VSD assumes one soil 

homogeneous compartment for the root zone as a whole, rather than the top soil where 

most of the fine roots occur. This assumption implies that the calculated concentrations 

refer to the bottom of the root zone. Generally, there is a strong gradient in soil solution 

chemistry and fine root distribution with depth. pH and Al concentrations generally decrease 

with depth, as most of the fine roots occur in the top soil. The PROBE model, however, does 

include multiple layers and is capable to simulate gradients with depth. However, the 

regional applicability (the horizontal direction) of this model is low due to limited availability 

of regional process parameters. 

The two models also differ in temporal scale yearly (VSD+) versus daily (PROBE). The 

influence of the chosen temporal scale, daily versus yearly mean, can particularly strong for 

the NO
3

, NH
4

 and base cations concentrations, which are strongly influenced by seasonal 

processes as nutrient uptake and mineralisation, which is especially the case in the upper 30 

cm.  

Both a high spatial and temporal resolution are especially needed in nature areas with small 

rain water lenses floating upon upwelling alkaline groundwater. Such nature reserves exhibit 

strong vertical and horizontal gradients in groundwater chemistry, which is one of the 

explanations for their high species richness (Cirkel et al., 2014a; Cirkel et al., 2014b). These 

areas often harbour habitat types and plant species that are highly protected by both 

national and international legislations. To account for the dynamics of the rainwater lenses 

in such areas, and for the sensitivity of the vegetation to subtle changes in weather 

conditions and water management, modelling with fine spatial and temporal resolutions is a 

prerequisite. This of course requires huge computation times. To avoid such a time 

consuming effort, process models can be used to generate easy-to-use repro-functions 

(Bartholomeus & Witte, 2013; Cirkel et al., 2016b). Another option might be to drastically 

schematize and simplify processes (De Haan et al., 2010; Stofberg et al., 2017). 

4.4 Challenges in definition of nutrient availability 

One of the biggest challenges in making a robust prediction of vegetation response is to 

improve the poor relationship between the indicator value for nutrient availability, Nm, and 

the actual nutrient availability in soil, and the mismatch between these two definitions. 

Unlike soil moisture and soil acidity, nutrient availability cannot be easily judged in the field 

and therefore the above-ground productivity of the vegetation is used as the visible proxy of 

Nm. However, the productivity of vegetation is not only influenced by nutrient availability but 

also by soil moisture and acidity. On top of that, biological factors also influence 

productivity: plants may produce root exudates to change pH around the roots or produce 

oxygen to change redox status, so that nutrients become more available for plants on that 

micro scale. Runhaar tackled this issue by defining Nm as ‘potential plant productivity based 

on nutrient availability’. In this way, the effects of other abiotic factors (e.g. moisture and 

acidity) are in principle eliminated from the expert judgement of Nm. Still, the fact that Nm 
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was more strongly related to above-ground biomass production than to any measures of 

nutrient availability (Fujita, unpublished) indicates that the bias in expert judgement 

hampers the clear relationship between Nm and soil nutrient availability.  

At this moment we do not have a better alternative to replace Nm; quantitative species traits, 

such as leaf nutrient concentrations and SLA, failed to exhibit a better correlation with soil 

nutrient measures. Therefore, in the context of WWN, we strive to find the best measure of 

nutrient availability in soil which matches what Nm represents. 

In that regard, making a clear definition of nutrient availability in soil is another challenge. In 

this report, we came up with a theoretically plausible measure of nutrient availability for 

plants, i.e. sum of net N mineralization, N deposition, asymbiotic N fixation, minus 

denitrification. However, there are still rooms to improve the definition and interpretation. 

For example, which time scale should we use? We choose the time scale of one year because 

the study of Fujita et al (2013) indicated that time scale had only minor influence on the 

relationships between Nm and nutrient availability. However, these relationships were 

obtained in (near-) equilibrium ecosystems, whereas under climate change scenarios inter-

annual relationships may have much stronger influence on the relationships. In addition, one 

will expect a time-lag in plant response under changing climate, because vegetation types do 

not instantaneously respond to the changes in nutrient availability in soil. Should we then 

use moving average of nutrient availability to have a better relationship between Nm and 

nutrient availability? If so, which time span should we take into account? In phase 2, we need 

to keep exploring the best definition of nutrient availability by means of comparing the 

model output with field observation from the available dataset.  

4.5  Model initialization 

The two models reviewed in this study use different initialization scheme for obtaining initial 

sets of state variables. Especially when the goal of modelling exercise is to predict (regional) 

spatial distribution of vegetation types In an equilibrium state, proper initialization of the 

model state variables (among others, C pool, N pool) is the key for successful prediction. The 

initialization schema is disconnected from the dynamic modelling processes. Based on the 

overview given in Section 2.2 and Section 2.3, we should combine our best knowledge and 

data to improve the initialization scheme to provide the proper ‘starting points’ to the model, 

irrespective of which model framework is chosen. 

When the goal of modelling exercise is to predict dynamic changes of nutrient availability or 

soil acidity under changing environment, then the model initialization of state variables 

becomes of relatively less importance. Instead, proper inclusion of feedback effects between 

soil, water, and plants plays much more importance. Especially for predicting nutrient 

availability, the balance between the effects of abiotic factors (e.g. temperature, soil 

moisture) on plant growth, plant death, and on soil organic matter decomposition determine 

how much nutrients accumulate in soil. These effects are often counteracting: for example, 

high temperature and high moisture speeds up soil decomposition (i.e. less accumulation) 

and they stimulate plant uptake (i.e. less accumulation) whereas they also increase litter 

input to soil (i.e. more accumulation). This means that subtle errors in parametrization for 

these processes can mislead the overall effects of climate change on nutrient availability. 

PROBE model is equipped to simulate these chains of feedback effects under changing 

environment, while VSD+ is not. If VSD+ is coupled with SUMO, then they are also able to 

handle the feedbacks. However, for both PROBE and VSD+ coupled with SUMO, it is a big 

challenge to properly parametrize all the equations which influence the feedback chains. In 

phase 2, efforts are needed to examine the uncertainties around the parametrization and to 

quantify how the error propagates in the course of model simulation period. Further, to 
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evaluate plausibility of the model to simulate dynamic changes in nutrient availability, model 

validation should be conducted using time-series data under experimentally manipulated 

abiotic conditions, such as those of lysimeter study in Hoge Veluwe. 

4.6 The availability of data 

One of the aims of the next phase will be the development of a nationwide applicable and 

flexible model to model the pH and nutrient availability adequately. Therefore are several 

datasets were inventoried for either parametrization or validation. A total number of nine 

data sets were inventoried to be used for parametrization. For the validation ten time series 

were inventoried. However, not all of these dataset are suitable for model validation, e.g. due 

to incompleteness or a too short monitoring period. About four time series seems of 

appropriate completeness enough to be suitable to be used for model comparison and 

validation. Another shortcoming is that the majority of this dataset is focused on the drier 

terrestrial ecosystems, so the wetter systems cannot be adequately addressed.  

The most promising datasets seems to be: 

 For grassland: Veenkampen (long-term monitoring site including interaction with 

groundwater) 

 For forest: Speuld (This is one of the very view sites in the Netherland with a long-term 

monitoring record. Furthermore, various model applications has been performed for this 

site, e.g. SMART2) 

 Lysimeter site Hoge Veluwe (relevant in view of the BTO-project) 

 Solling (A long-term monitoring record for a Spruce forest in Germany. For this site the 

VSD+ model has already been applied) 
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5 Conclusions and 

recommendations 

5.1 Conclusions 

 Main similarities are: 

o Overall the same process are included in both models. 

o In general the used reduction function for environmental factors in both models 

are quite comparable. Differences exist for the effect of soil and litter quality 

and the effects of soil available N. 

 

 Main differences are: 

o Scale, both temporal (daily versus yearly) and spatial (plot versus regional; one-

layer versus multi-layer). Where PROBE is operating at a daily time scale for 

multi-layer soil profiles and VSD+ at a yearly time scale and at a regional spatial 

scale.  

o The principal difference between the two model chains is the level of detail 

used in the soil chemistry and soil hydrology part. Where PROBE is much more 

detailed in view of soil chemistry and soil hydrology. 

o Effects of nutrient limitation and C:N:P stoichiometry on plant growth and 

decomposition are only explicitly included in PROBE. 

o PROBE is rather complex with many input (parameter) values and requires a 

high computational load whereas the opposite is true for VSD+. 

 

 Consequences of differences: 

o Some of the effects of environmental factors are not included in a model but in 

the other (e.g. temperature effect on plant death, pH effect on denitrification) or 

modelled differently. However, these reduction equations can be easily added 

or replaced without changing model structure. 

o PROBE takes more process-based approach to reflect the effects of 

environmental factors. These (temporal) effects are not easily replaced since it 

requires changes in model structure (i.e. increases in state variables) or 

requires different time scale. 

o A small time step, enable to include temporal aspects, such as seasonality, 

effect of short weather events, inter-annual management options and a 

feedback between plant, soil, and hydrology. 

o The pH module PROBE is not robust for all combinations of input value 

o VSD+ does not include redox-processes. 

o The applicability is rather demanding for PROBE, whereas VSD+ is rather easy to 

apply. 

5.2 Recommendations 

Based on the performed analyses and comparisons we come to the following 

recommendations in order to derive a robust and adequate pH and nutrient availability 

module for the WWN: 

 pH: improve the relationship between pH and base saturation, which is crucial for the pH 

prediction between 4.5 and 6.5, which is a common pH for groundwater influenced 
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ecosystems. Furthermore, include the role of upward seepage, both in view of quantity 

and quality.  

 N availability: N transformations such as mineralisation, nitrification and denitrification 

are strongly influenced by soil moisture and pH. These relationships are crucial for an 

adequate prediction of the N leaching and N availability. Since the relationships currently 

are not always scientifically sound, it is recommended to improve these relationships. 

 P availability: since P availability is also relevant in view of plant species diversity it is 

recommended to include P availability in the WWN. However, it is too complicated and 

not realistic to include a process based P availability  module. Therefore, we recommend 

to derived relationships between solid phase or adsorbed  P (such as Pox, Pw) and 

biomass production. 
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Appendix I Comparison of model 

input data 

Input values for soil module and pH module of VSD+ are separately shown for the sake of 

comparison with CENTURY-SWAP-ORCHESTRA, although these two modules are integrated in 

VSD+. The descriptions of PROBE model are of PROBE-2.2 (for pH) and PROBE-3 (for the rest). 

Input values are divided into: initial values of state variables, site-specific input values, 

vegetation-specific parameters (for which different default values are set for each vegetation 

type or species), fixed parameters (i.e. those which do not vary between sites nor vegetation 

types), and input values which are computed in other model modules.  

 

PROBE (CENTURY-SWAP-ORCHESTRA) VSD+ 

G
e
n
e
r
a
l 

• Calculation period (begin and end date) 

• Thickness of each soil layer (cm) 

 

• Site information, title above the produces 

chart; 

• Calculation period (begin and end year);  

• Thickness of soil compartment (m); 

M
o
d
e
l
 
o
p
t
i
o
n
s
 

• Growth option for plant module: Trees, 

grasses, or trees + grasses 

 

 

• Cation exchange model option (Gaines-

Thomas model (1) or Gapon model (2) 

• Organic acid dissociation model option; 

Oliver model (0), mono-protic organic acid 

(1) or none (-1); 

• Parameters for organic acid dissociation 

model; 

I
n
p

u
t
 
(
s
o
i
l
 
m

o
d
u
l
e
)
 

‘CENTURY’ (SOM module) 

[Initial values of state variables] 

• Initial C content in top soil (gC/m2) 

• Initial N content in top soil (gN/m2) 

• Initial concentrations of NO3 and NH4 in top 

soil layer (gN/m2) 

• Initial concentrations of total mineral N 

(NO3+NH4) in the second and third soil layer 

(gN/m2) 

• Initial C content in plant litter (gC/m2) 

• Initial content of dead wood biomass (for 

forest only) 

 

‘VSD+’ 

[Initial values of state variables] 

• Initial amount of C in top layer (g/m2); 

• Initial C:N ratio in topsoil (g/g); 

• Initial concentration of NO3- and NH4+ 

(eq/m2) 
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[Site-specific input values] 

• Atmospheric N deposition (wet + dry) 

(gN/m2/yr) 

• Non-symbiotic biological N fixation 

(gN/m2/yr) 

• Volumetric water content at saturation (θ
sat

), 

field capacity (θ
fc

), and wilting point (θ
wilt

) 

 

• Soil clay, silt, and sand content (fraction) 

• Lignin content in shoots and roots (fraction) 

(This can also be approximated based on 

average annual precipitation (mm/year)) 

• Relative root density in each soil layer 

(fraction between 0 and 1)  

 

[Site-specific input values] 

• Deposition of NO
x

 and NH
3

 (eq/m2/yr); 

 

• Nitrogen fixation (eq/m2/yr) 

• Volumetric water content at saturation (θ
sat

), 

field capacity (θ
fc

), wilting point (θ
wilt

), and at 

a pressure of -1 bar (θ
P=-1bar

) 

• Clay content of the soil (%); 

• Quality index of litterfall (-) for the RothC 

model  

 

• Yearly air temperature (°C). Based on either 

daily, weekly or monthly data a yearly a 

reduction fraction is derived for each year.  
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[Fixed parameters] 

• Maximum decomposition rate for each SOM 

pool (day-1) (’dec1’ – ‘dec5’; and for forests, 

‘decw1’, ‘decw2’, ‘decw3’ additionally) 

• Coefficient values for reduction function of 

soil temperature on decomposition rate 

(‘teff(1..4)’) 

• Coefficient values for reduction function of 

moisture on decomposition rate 

• Coefficient values for reduction function of 

texture on decomposition rate (‘peftxa’, 

‘peftxb’) 

• Coefficient values for reduction function of 

lignin on decomposition rate (‘pligst(1..2)’) 

• Coefficient values for reduction function of 

texture on microbial yield efficiency 

 

• Maximum nitrification rate (day-1) 

• Coefficient values for reduction function of 

soil pH on nitrification rate 

• Coefficient values for reduction function of 

soil temperature on nitrification rate 

• Coefficient values for reduction function of 

soil moisture on nitrification rate 

• Coefficient values for function of labile C on 

denitrification rate 

• Coefficient values for function of nitrate on 

denitrification rate 

• Coefficient values for reduction function of 

soil moisture on denitrification rate 

 

• Minimum and maximum C:N ratios of surface 

microbe, active, slow, and passive pools 

(‘pcemic(1..2,1)’ , ‘varat1’ – ‘varat3’) 

• C:N ratio of structural pools (‘rcestr(1)’) 

• Coefficient values to determine the effect of 

soil texture on flow rates of active pool into 

slow and passive pools (‘ps1s3(1..2)’) 

• Coefficient values to determine the effect of 

lignin on flow rates from surface structural 

pool into surface microbe and slow pools 

(‘spl(2)’) 

• Coefficient values to determine the effect of 

lignin on flow rates from belowground 

structural pool into active and slow pools  

• Coefficient values for function of lignin and 

nitrogen content on division of plant residues 

into metabolic and structural pools 

• Initial division of C into different soil pools 

(fractions). This is related to initialization of 

C pools.  

[Fixed parameters] 

• Maximum decomposition rate of each C 

pool (yr-1) (k
DPM,ref

, k
RPM,ref

, k
BIO,ref

, k
HUM,ref

); 

• Coefficient values for reduction function of 

moisture on mineralisation rates  

• Coefficient values for reduction function of 

temperature on mineralisation rates 

• Coefficient values to function of clay on 

fraction of decomposed C converted to CO2 

 

 

 

 

 

 

 

• Nitrification rate at reference temperature 

of 10° (yr-1); 

• Coefficient values for reduction factor of 

moisture and temperature on nitrification 

rates  

• Denitrification rate at reference temperature 

of 10° (yr-1); 

• Coefficient values of reduction factor of 

moisture and temperature on denitrification 

rates; 

 

• C:N ratios of three C pools (BIO, RPM, and 

IOM) 

• Fraction of decomposed C that is 

transferred to the BIO pool (fr
BIO

) 

 



 KWR2017.053 | June 2017 68  

 

 

Comparison of model concepts for nutrient availability and soil acidity in terrestrial ecosystems 

 

 

[Input from other model module] 

• Daily water flow between layers (cm/d) 

 

• Daily soil volumetric water content 

(cm3/cm3) 

• Daily soil temperature (°C) 

• Daily plant demand of N for potential 

production (gN/m2/d) 

• Daily plant residue input (for each plant 

component) in terms of C and N (gC/m2/d or 

gN/m2/d) 

(• Soil pH) 

[Input from other model module] 

• Percolation (i.e. the water that is leaving the 

soil compartment) (m/yr); 

• Volumetric water content (m3/m3). Based 

on either daily, weekly or monthly data a 

yearly a reduction fraction is derived for 

each year. 

• Total plant uptake of N (eq/m2/yr); 

 

• Litter fall C and N (g/m2/yr); 

 

 

• Soil pH 

I
n
p

u
t
 
(
p

H
 
m
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‘ORCHESTRA’ 

[lnitial values of state variables] 

• initial concentrations of ‘master’ species of 

cations and anions (H+, Cl-, HCO3-, NO3-, 

SO42-, PO43-, Ca2+, Mg2+, Na+, K+, Mn2+, 

NH4+,CO2[g], in mol/L) (speciation according 

to ORCHESTRA database Minteqv4) 

 

‘VSD+’ 

[Initial values of state variables] 

• Fraction (0-1) of Ca in the parent material of 

a calcareous soil; 

• Initial base saturation (fraction 0-1) or 

separately initial saturation of Ca, Mg and 

K; 

• Initial concentration of cations and anions, 

i.e. H+, SO42-, NO3-, Cl-, HCO3-, Org-, 

Ca2+, MG2+, K+, Na+, Al3+, NH4+ (eq/m2) 

 

 

[Site-specific input values] 

• Chemical composition of groundwater (pH, 

Cl-, HCO3-, NO3-, SO42-, PO43-, Ca2+, Mg2+, 

Na+, K+, Mn2+, NH4+,CO2[g], in mol/L) 

• Chemical composition of rainwater (pH, Cl-, 

HCO3-, NO3-, SO42-, PO43-, Ca2+, Mg2+, 

Na+, K+, Mn2+, NH4+,CO2[g], in mol/L) 

• Soil substrate density (g/cm3) for each soil 

layer 

• Porosity (cm3/cm3) for each soil layer 

• Clay (kg/kg) for each soil layer 

• Soil organic matter (kg/kg) for each soil layer 

• Total calcium content of the soil (mol/kg) 

(inc. adsorbed/calcite/pore water Ca) 

• Iron (hydro)oxide + aluminium oxide (kg/kg) 

for each soil layer 

• Gibbsite Al(OH)3 (kg/kg) for each soil layer 

• Calcite CaCO3 (kg/kg) for each soil layer 

• CEC for each soil layer (approximated from 

clay, SOM, pH) 

 

[Site-specific input values] 

• Deposition of SO2, Ca, Mg, K, Na and Cl 

(eq/m2/yr); 

• Uptake efficiency of available N (fraction 

between 0-1), i.e. is the fraction of the N 

deposition that is 

available for uptake.; 

• Weathering rates for Ca, Mg, K and Na 

(eq/m3/yr); 

• Concentration of organic acids (m*DOC) 

(mol/m3); either a constant value or a time 

series with yearly values. 

• Bulk density (g/cm
3

) 

• Average potential cation exchange capacity 

(CEC) of the soil (meq/kg); 

• log10 of selectivity constant for Al-BC 

exchange; 

• log10 of selectivity constant for H-BC 

exchange; 

• log10 of Al equilibrium constant ((mol/l)1-

expAl); 
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[Fixed parameters] 

• Maximum weathering rate of silicates 

(molc/m2/s/cm) 

• Coefficient values for function of pH on 

weathering rate of silicates 

• Coefficient values to determine root 

respiration as a function of transpiration 

[Fixed parameters] 

• CO2 pressure in the soil solution (given as a 

multiple of pCO2(atm) in air); 

• Exponent in [Al] = KAlox*[H]expAl (>0); 

default is 3 (gibbsite equilibrium); 

 

 

[Input from other model module] 

• Daily soil volumetric water content 

(cm3/cm3) and water flow between layers 

(cm/d) 

• Daily soil temperature (°C) 

 

[Input from other model module] 

• Percolation (i.e. the water that is leaving the 

soil compartment) (m/yr); 

• Volumetric water content (m3/m3); 

• Concentration of NO3- and NH4+ (eq/m2) 

• Net plant uptake Ca, Mg and K (eq/m2/yr); 
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‘CENTURY’ (plant module) 

[lnitial values of state variables] 

• Initial above-ground plant biomass (g/m2)(for 

grassland) 

• Initial biomass of 5 plant components: 

leaves, fine roots, fine branches, large 

woods, and coarse roots (for forest) 

 

 

‘Growup’ 

[lnitial values of state variables] 

• The initial distribution of the stem volumes 

of the various tree species (for uneven aged 

forests only) 

 

 

[Site-specific input values] 

• Mowing rate (fraction between 0-1) (for 

grassland only) 

 

[Site-specific input values] 

• Year of planting (even aged forests only),  

• Fraction of biomass that is removed by 

thinning (%), and the year in which the 

action take place, and which residues are 

left at the plot 

• Year of clear cut, and which residues are 

left at the plot. 
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[Vegetation-specific parameters: Forests] 

(Default values are set for each forest type, but 

can be modified by the user)(Items with * are 

also common for the grassland version) 

• Maximum gross forest production rate (g 

biomass/m2/day) (‘prdx(2)’) 

• maximum net production of trees (g 

C/m2/day) (‘prdx(3)’) 

• *Coefficient values for reduction function of 

soil temperature on plant growth 

(‘ppdf(1..4)’) 

• Coefficient to determine LAI effects on tree 

production (‘laitop’) 

 

• C allocation fraction of new production to 

different forest compartments, for juvenile 

forest and for mature forest (‘fcfrac(1..5,1)’, 

‘fcfrac(1..5,2)’) 

• Month-specific death rate of leaves (fraction 

/day) (‘leafdr(1..12)’)  

• Death rate for each forest components 

except for leaf (fraction/day)(‘wooddr(2..5)’) 

• *Fall rate of standing dead (fraction /day) 

(‘fallrt’) 

 

• Maximum and minimum C:N ratio of each 

tree compartment (‘cerfor(1,1..5,1)’, 

(‘cerfor(2,1..5,1)’ ) 

 

 

• *Maximum level of N fixed per C fixed 

(gN/gC) (‘snfxmx’) 

• *Proportion of plant species associated with 

symbiotic N fixers (fraction in 0-1)  

• Coefficients to approximate LAI from large 

wood (‘maxlai’, ‘klai’) 

• Coefficient controls the ratio of sapwood to 

total stem wood (‘spak’) 

• Lignin fraction for each forest component 

(fraction)(‘wdlig(1..5)’) 

[Vegetation-specific parameters] 

(Default values are set for each tree species, 

but can be modified by the user) 

• Forest growth rate for different age classs 

(m3/ha/y) (for even aged forests) 

• Maximum tree growth rate (m3/ha/y) (for 

uneven aged forests) 

• Coefficient value to determine effect of 

competition on growth rate (for uneven 

aged forests) 

 

 

• Biomass expansion factors (BEFs) for each 

tree compartment and for each age class. 

(Default values are set for different 

regions ) 

 

• Turnover rates of each tree compartments 

(yr-1) 

 

 

 

• Carbon content in biomass (%) 

• Wood density (g/cm3) 

• Nutrient (Ca, Mg, K) contents of each tree 

compartments (%).  

• Maximum and minimum N content in leaves 

(%) 

• Coefficient to determine the effect of N 

deposition on N content in leaves 
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[Vegetation-specific parameters: Grasslands] 

(Default values are set, but can be modified by 

the user) 

• Maximum growth rate (gC/m2/day) 

('prdx(1)') 

• *Coefficient values for reduction function of 

soil temperature on plant growth 

(‘ppdf(1..4)’) 

• The amount of the shading materials 

(gC/m2) with which production is reduced to 

half maximum (‘biok5’) 

• Coefficient values to determine lignin content 

as a function of annual rainfall (‘fligni’) 

• Maximum shoot and root death rate 

(fraction/day) (‘fdeth(1)’, ‘rdr’) 

• Shoot death rate of the senescence month 

(fraction) ) (‘fdeth(2)’) 

• Extra death rate of shoot due to shading 

(fraction /day) ) (‘fdeth(3)’) 

• Threshold value of plant biomass above 

which shading effect on shoot death is 

induced (g/m2) (‘fdeth(4)’) 

• *Fall rate of standing dead (fraction /day) 

(‘fallrt’) 

• *Maximum level of N fixed per C fixed 

(gN/gC) (‘snfxmx’) 

• *Proportion of plant species associated with 

symbiotic N fixers (fraction in 0-1)  

• Maximum and minimum C:N ratio of root 

(ratio) (‘prbmn’, ‘prbmx’) 

• Maximum and minimum C:N ratio of shoot 

when biomass is nearly zero (ratio) 

(‘pramn(1..3,1)’, ‘pramx(1..3,1)’) 

• Maximum and minimum C:N ratio of shoot 

when biomass reaches threshold (ratio) 

(‘pramn(1..3,2)’, ‘pramx(1..3,2)’) 

• Threshold value of shoot biomass when C:N 

ratio reaches the maximum (g biomass/m2) 

(‘biomax’) 
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[Fixed parameters] 

• Coefficient values for reduction function of 

soil moisture on plant growth 

• Coefficient values for function of soil 

moisture on plant death 

• Coefficient values to determine the effect of 

root biomass on the fraction of soil mineral N 

available for plants (‘rictrl’, ’riint’) 

• Coefficient values to determine shoot:root 

ratio of newly-produced biomass based on 

annual precipitation (‘agppa’, ‘agppb’, 

‘bgppa’, ‘bgppb’) 

 

 

 

[Input from other model module] 

• Daily soil mineral N availability in top soil 

(gN/m2) 

• Daily soil volumetric water content 

(cm3/cm3) [when coupled with hydrological 

module of CENTURY] 

• Potential and actual transpiration (cm/d) 

[when coupled with SWAP] 

• Daily soil temperature (°C) 

 

[Input from other model module] 

none 

 

 

 

 

‘SUMO’ 

[lnitial values of state variables] 

• Initial biomass per organ and per vegetation 

structure type. For the standard regional 

version the initial values per vegetation 

structure type and age class are provide by 

the model. For standalone application (e.g. 

in combination with VSD+) these values 

must be provide by the user. 

• Initial N content per organ and per 

vegetation structure type 

• Vegetation structure type (one of 23 types) 

• Age of the vegetation (yr) 
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 [Site-specific input values] 

• Fertilisation (ton N∙ha-1∙yr-1) 

• Management (no management or one of 10 

options) 

• Frequency of management (yr) 

(management options occurring once in a 

period of serval years)  

• Frequency of mowing (times∙yr-1) 

(management options occurring more than 

once per years) 

• Cutting cycle period and the percentage of 

thinning per thinning cycle For the regional 

version predefined values are include in the 

model. For standalone application (e.g. in 

combination with VSD+) these values must 

be provide by the user. 

• Pioneer tree species (none, or one of 23 

tree species) 

• Climax tree species (none, or one of 23 tree 

species) 

 

 

 [Vegetation-specific parameters] 

(these values are different per tree species for 

forests, or per vegetation type for the 

functional types grasses and herbs, dwarf 

shrubs and shrubs) 

• Division of new biomass and nitrogen over 

the organs (fraction) 

• Added amount of seed biomass in the 

system  

• Fraction of dead biomass per organ  

• Light extinction factor, i.e. the fraction of 

light remaining after interception in the 

canopy.  

• Minimum and maximum N content (%), i.e. 

the boundaries between the actual N 

content may vary.  

• Minimum and maximum P content (%), i.e. 

the boundaries between the actual P 

content may vary.  

- Coefficient values to determine the effect of 

N deposition on N content in leaves 

• Maximum growth rate (ton/ha/yr) 

• Coefficients for the effect of biomass 

increment on tree growth (m/yr) 

• Potential transpiration per vegetation type 

(mm/yr) 
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 [Fixed parameters] 

• Minimum of biomass that is required per 

organ before grazers can eat from the 

biomass (ton/ha) 

• The amount of biomass eaten by each 

grazer, the fraction that become excreted, 

and the N and P contents of the faeces and 

urea 

• Fraction of N that is reallocated depending 

on the N content of the organ per organ 

 

 

 [Input from other model module] 

• N availability in soil (an extended version 

also uses P, Ca, Mg and K availability) 

. Mean spring water level in cm below surface 

• Temperature 

• CO
2
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Appendix II Available dataset for 

parameterization 

TABLE 7 DESCRIPTION OF DATASET WITH FOREST STANDS SAMPLED IN 1990 

Monitoring Characteristics Type of measurement Elements included 

Reference De Vries and Leeters (2001)  

Country Netherlands  

Ecosystem/vegetation Forest  

Period 1990  

Soil type Non-calcareous sand   

Amount of locations 150 Non-calcareous sand 

Sample depth Litter 

0-30 cm 

30-60 cm 

60-100 cm 

 

Duplicates 20 subsamples mixed to one  

Soil Parameters Soil contents (solid phase) 

 

Soil solution concentrations 

 

CEC 

Oxalate extractable 

C, N, P, K, Ca, Mg, S (litter) 

C, N, P (mineral) 

pH, Al, Fe ,K, Ca, Mg, K, Na, 

NH
4

, NO
3

, SO
4

, Cl, RCOO
-

 

H, Al, Fe ,K, Ca, Mg, K, Na, NH
4

 

Al, Fe, P 

Carbon and Nutrient pools  C, N, P 

Vegetation parameters Nutrient contents in foliage  

Species composition No  
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TABLE 8 DESCRIPTION OF DATASET WITH FOREST STANDS TO DEFINE THE STARTING POINT FOR 

ACIDIFICATION RESEARCH 

Monitoring Characteristics Type of measurement Elements included 

Reference De Vries et al. (1995)  

Country Netherlands  

Ecosystem/vegetation Forest  

Period 1992  

Soil type Non-calcareous sand   

Amount of locations 12   

Sample depth Litter 

0-10 cm 

10-30 cm 

30-60 cm 

60-100 cm 

 

Duplicates 20 subsamples mixed to one  

Soil Parameters Texture 

Soil contents (solid phase) 

Soil solution concentrations 

 

CEC 

Oxalate extractable 

 

C, N, P, K, Ca, Mg, Na, S  

pH, Al, Fe ,K, Ca, Mg, K, Na, 

NH
4

, NO
3

, SO
4

, Cl, H
2

PO
4

, RCOO
-

 

H, Al, Fe ,K, Ca, Mg, K, Na, NH
4

 

Al, Fe, P 

Carbon and Nutrient pools  C, N, P 

Vegetation parameters Nutrient contents in foliage  

Species composition   

 

TABLE 9 DESCRIPTION OF DATASET WITH DUNE LOCATIONS, SAMPLED IN 1992 

Monitoring Characteristics Type of measurement Elements included 

Reference (De Vries, 1993)  

Country Netherlands  

Ecosystem/vegetation Dunes, grassland and deciduous forest  

Period 1992  

Soil type Calcareous and non-calcareous sand   

Amount of locations 48  

Sample depth Litter 

0-10 cm 

10-30 cm 

30-60 cm 

 

Duplicates 20 subsamples mixed to one  

Soil Parameters Soil contents (solid phase) 

 

Soil solution concentrations 

 

CEC 

Oxalate extractable 

C, N, P, K, Ca, Mg, S (litter) 

C, N, P (mineral) 

pH, Al, Fe , Mn, K, Ca, Mg, Na, 

NH
4

, NO
3

, SO
4

, Cl 

H, Al, Fe ,Mn, K, Ca, Mg, K, Na 

Al, Fe, P 

Carbon and Nutrient pools  C, N, P 

Vegetation parameters Nutrient contents in foliage  

Species composition   
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TABLE 10 DESCRIPTION OF DATASET WITH FOREST STANDS ON LÖSS SOILS, SAMPLED IN 1992 

Monitoring Characteristics Type of measurement Elements included 

Reference Klap et al. (1999b)  

Country Netherlands  

Ecosystem/vegetation Forest  

Period 1992  

Soil type Löss  

Amount of locations 40  

Sample depth Litter 

0-10 cm 

10-30 cm 

30-60 cm 

60-100 cm 

 

Duplicates   

Soil Parameters Soil contents (solid phase) 

 

Soil solution concentrations 

 

CEC 

Oxalate extractable 

C, N, P, K, Ca, Mg, S (litter) 

C, N, P (mineral) 

H, Al, Fe ,K, Ca, Mg, K, Na, NH
4

, 

NO
3

, SO
4

, Cl, RCOO
-

 

H, Al, Fe ,K, Ca, Mg, K, Na, NH
4

 

Al, Fe, P 

Carbon and Nutrient pools  C, N, P (all) Ca, Mg, K, Fe, Mn 

(subset of 10) 

Vegetation parameters Nutrient contents in foliage  

Species composition   

 

TABLE 11 DESCRIPTION OF DATASET WITH FOREST STANDS ON CLAY SOILS 

Monitoring Characteristics Type of measurement Elements included 

Reference Klap et al. (1999b)  

Country Netherlands  

Ecosystem/vegetation Forest  

Period 1993  

Soil type Clay   

Amount of locations 30  

Sample depth Litter 

0-10 cm 

10-30 cm 

30-60 cm 

60-100 cm 

 

Duplicates   

Soil Parameters Soil contents (solid phase) 

 

Soil solution concentrations 

 

CEC 

Oxalate extractable 

C, N, P, K, Ca, Mg, S (litter) 

C, N, P (mineral) 

H, Al, Fe ,K, Ca, Mg, K, Na, NH
4

, 

NO
3

, SO
4

, Cl, RCOO
-

 

H, Al, Fe ,K, Ca, Mg, K, Na, NH
4

 

Al, Fe, P 

Carbon and Nutrient pools  C, N, P (all) Ca, Mg, K, Fe, Mn 

(subset of 10) 

Vegetation parameters Nutrient contents in foliage  

Species composition   
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TABLE 12 DESCRIPTION OF DATASET WITH FOREST STANDS ON PEAT SOILS 

Monitoring Characteristics Type of measurement Elements included 

Reference Klap et al. (1999b)  

Country Netherlands  

Ecosystem/vegetation Forest  

Period 1993  

Soil type Peat   

Amount of locations 30  

Sample depth Litter 

0-10 cm 

10-30 cm 

30-60 cm 

60-100 cm 

 

Duplicates   

Soil Parameters Soil contents (solid phase) 

 

Soil solution concentrations 

 

CEC 

Oxalate extractable 

C, N, P, K, Ca, Mg, S (litter) 

C, N, P (mineral) 

H, Al, Fe ,K, Ca, Mg, K, Na, NH
4

, 

NO
3

, SO
4

, Cl, RCOO
-

 

H, Al, Fe ,K, Ca, Mg, K, Na, NH
4

 

Al, Fe, P 

Carbon and Nutrient pools  C, N, P, Ca, Mg, K, Fe, Mn  

Vegetation parameters Nutrient contents in foliage  

Species composition   

TABLE 13 DESCRIPTION OF DATASET WITH MEASUREMENTS IN DRENTSE AA AREA 

Monitoring Characteristics Type of measurement Elements included 

Reference Klap et al. (1999a)  

Country Netherlands, Drentse AA  

Ecosystem/vegetation Different  

Period 1994  

Soil type Sand (41), Peat (15) and clay (4), arable 

(3) 

 

Amount of locations 63 (50 sampled, 13 in other sets)  

Sample depth Litter (only forest and heath where 

available) 

0-10 cm 

10-30 cm 

30-60 cm 

60-100 cm 

 

Duplicates 20 subsamples mixed to one  

Soil Parameters Soil moisture content 

Bulk density 

Soil contents (solid phase) 

Soil solution concentrations 

 

CEC 

Oxalate extractable 

 

 

C, N, P, pH (H
2

O and KCl) 

pH, Al, Fe ,K, Ca, Mg, K, Na, 

NH
4

, NO
3

, SO
4

, Cl, RCOO
-

 EGV 

H, Al, Fe ,K, Ca, Mg, K, Na, NH
4

 

Al, Fe, P (not in litter) 

Carbon and Nutrient pools  C, N, P 

Vegetation parameters Nutrient contents in foliage  

Species composition   
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TABLE 14 DESCRIPTION OF DATASET WITH RESAMPLING OF FOREST STANDS ON SANDY SOILS 

Monitoring Characteristics Type of measurement Elements included 

Reference Leeters and de Vries (2001)  

Country Netherlands  

Ecosystem/vegetation Forest  

Period 1995  

Soil type Non-calcareous sand   

Amount of locations 200  

Sample depth Litter 

0-10 cm 

10-30 cm 

 

Duplicates 10 (litter) or 25 (mineral) subsamples 

mixed to one 

 

Soil Parameters Soil contents (solid phase) 

 

Soil solution concentrations 

 

CEC 

 

Oxalate extractable 

C, N, P, K, Ca, Mg, S (litter) 

C, N, P (mineral) 

H, Al, Fe ,K, Ca, Mg, K, Na, NH
4

, 

NO
3

, SO
4

, Cl, RCOO
-

 

H, Al, Fe ,K, Ca, Mg, K, Na, NH
4

 

(only 0-10 cm), 0-30: acidity 

Al, Fe, P 

Carbon and Nutrient pools  C, N, P 

MSW 

Vegetation parameters 

Nutrient contents in foliage  

Species composition   

TABLE 15 DESCRIPTION OF DATASET HUMBASE (BETWEEN BRACKETS THE NUMBER OF SAMPLES) 

Monitoring Characteristics Type of measurement Elements included 

Reference Van Delft (2001); (Van Delft, 2013)  

Country Netherlands  

Ecosystem/vegetation Grassland, heath and forest  

Period 1990 – 2013  

Soil type Different soil types  

Amount of locations 296  

Sample depth 0-10 (67) 

0-15 (14) 

0-20 (40) 

0-25 (83) 

0-30 (15) 

Other depths (78) 

 

Duplicates No  

Soil Parameters Soil contents (solid phase) 

 

CEC (474) 

 

Oxalate extractable 

C, N, P (mineral) 

pH-H
2

O (146) pH-KCl (596) 

H, Al, Fe ,K, Ca, Mg, K, Na, NH
4

 

(only 0-10 cm), 0-30: acidity 

Al (240), Fe (218), P (235) 

Carbon and Nutrient pools  C (41), humus (666), N (540), P 

(475) 

Vegetation parameters   

Species composition Association given  
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TABLE 16 DESCRIPTION OF DATASET FUJITA ET AL. 2013 

Monitoring Characteristics Type of measurement Elements included 

Reference Fujita et al. (2013)  

Country Netherlands  

Ecosystem/vegetation Grassland, heath  

Period 2011  

Soil type Different soil types  

Amount of locations 36  

Sample depth 0-15 cm 

 

 

Duplicates 3 subsamples, mixed to one  

Soil Parameters Soil contents (solid phase) 

Chloroform fumigation extraction 

KCl extraction 

Olsen extraction 

Oxalate extraction 

Soil texture 

Bulk density 

Net mineralization rates (incubation 

experiment) 

C, N, P (mineral) 

C, N (microbe) 

N-NH4, N-NO3, pH 

P-PO4,  

P, Al, Fe 

Carbon and Nutrient pools  C, N, P 

Vegetation parameters Nutrient content (N, P) in above-ground 

biomass 

 

Species composition Cover of vascular plant species  

 

 

TABLE 17. DESCRIPTION OF DATASET ORDONEZ ET AL. 2010 

Monitoring Characteristics Type of measurement Elements included 

Reference Ordonez et al. 2010  

Country Netherlands  

Ecosystem/vegetation Grassland, shrubs, forests  

Period 2009?  

Soil type Different soil types  

Amount of locations 51  

Sample depth 0-15 cm 

 

 

Duplicates 5 subsamples, mixed to one  

Soil Parameters Soil contents (solid phase) 

KCl extraction 

Olsen extraction 

Net mineralization rates (incubation 

experiment) 

C, N, P (mineral) 

N-NH4, N-NO3, pH 

P-PO4,  

Carbon and Nutrient pools  C, N, P 

Vegetation parameters Nutrient content (N, P) in plant leaves  

Species composition Cover of vascular plant species  
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TABLE 18. DESCRIPTION OF DATASET OLDE VENTERINK ET AL. 2002 

Monitoring Characteristics Type of measurement Elements included 

Reference Olde Venterink et al. (2002)  

Country Netherlands, Belgium  

Ecosystem/vegetation Grasslands  

Period 1995 - 2003  

Soil type Different soil types  

Amount of locations 47  

Sample depth 0-10 cm 

 

 

Duplicates No duplicate  

Soil Parameters Soil contents (solid phase) 

KCl extraction 

ALA extraction  

Net mineralization rates (incubation 

experiment) 

N, P (mineral), SOM 

N-NH4, N-NO3, pH 

P-PO4 

Carbon and Nutrient pools  N, P 

Vegetation parameters Nutrient content (N, P) in above-ground 

biomass 

 

Species composition Cover of vascular plant species  

* Permission of the authors is required to use this dataset. 
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Appendix III Available dataset for 

model validation 

TABLE 19 DESCRIPTION OF DATASET SPEULD 

Monitoring Characteristics Type of measurement Elements included 

Reference Van der Salm et al. (1998)  

Location Speulderbos  

Ecosystem/vegetation Forest, Douglas fir  

Area   

Amount of replicates   

Period 1990-1995  

Frequency e.g. monthly or weekly  

Soil Parameters (frequency) Soil type  

 Bulk density  

 CEC  

   

   

   

   

   

   

Carbon and Nutrient pools   

Soil moisture Lysimeter cups (bi-weekly) pH, NH4, NO3, Cl, Na, K, Al, 

Ca, Mg, Fe, Mn, P, S, Si, Zn  

Vegetation parameters Biomass fitted to growth data  

 Nutrient contents: no  

Species composition No  

   

Meteo data e.g. Rainfall, temperature  

Hydrology Modelled by SWATRE  

   

Deposition Measured bi-weekly  

   

 

TABLE 20 DESCRIPTION OF DATASET RISDALSHEIA 

Monitoring Characteristics Type of measurement Elements included 

Reference Mol-Dijkstra and Kros (2001)  

Location Risdalheia  

Ecosystem/vegetation Pine and birch with heather  

Area   

Amount of replicates   

Period 1984-1997  

Frequency   

Soil Parameters (frequency) Soil type  
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 Bulk density  

 Porosity  

 CEC  

 SO4 adsorption  

 Organic matter  

   

   

   

Carbon and Nutrient pools   

Mineralisation Measured in 1994-1996  

Nitrification Measured in 1994-1996  

Soil moisture Concentrations (several per year) pH, NH4, NO3, Cl, Na, K, Al, 

Ca, Mg, Fe, Mn, P, SO
4

  

Vegetation parameters Litter fall  

 Nutrient contents N, K, Ca, Mg  

Species composition   

   

Meteo data Rainfall, temperature  

Hydrology Modelled by SWATRE  

   

Deposition Measured yearly (we only have 

yearly data) 

 

   

 

TABLE 21 DESCRIPTION OF DATASET SPEULD  

Monitoring Characteristics Type of measurement Elements included 

Reference 

Grobben et al. (unpublished 

data) 

(Kemmers, 1999; Kemmers et 

al., 2000) 

 

Location 7 sites   

Ecosystem/vegetation Wet grassland  

Area   

Amount of replicates   

Period 1999  

Frequency   

Soil Parameters (frequency) Soil type  

 Bulk density  

 CEC  

   

Carbon and Nutrient pools   

Soil moisture Lysimeter cups (monthly) pH, Na, K, Ca, Mg, Fe, SO
4

, Cl, 

NH
4

, NO
3

 

Vegetation parameters Biomass:No  

 Nutrient contents: no  

Species composition No  

   

Meteo data e.g. Rainfall, temperature From closest KNMI station 

Hydrology Modelled by SWATRE  
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Deposition 

Taken from modelled maps by 

RIVM 

 

   

TABLE 22 DESCRIPTION OF DATASET VEENKAMPEN 

Monitoring Characteristics Type of measurement Elements included 

Reference Mol et al, (unpublished data)  

Location Wageningen  

Ecosystem/vegetation Wet grassland  

Area   

Amount of replicates   

Period 1983-2006  

Frequency   

Soil Parameters (frequency) Soil type  

 Bulk density  

 CEC   

   

Carbon and Nutrient pools ‘86, ‘87, ‘91, ‘93, ‘97 C, N, P, K 

Soil moisture 1993, 2002, 2006 pH, Na, K, Ca, Mg, Fe, SO
4

, Cl, 

NH
4

, NO
3

 

Vegetation parameters Biomass: 1983-1990, 2006  

 

Nutrient contents: 1983-1990, 

2006 

N, P, K 

Species composition ?  

   

Meteo data e.g. Rainfall, temperature From closest KNMI station 

Hydrology   

   

Deposition 

Taken from modelled maps by 

RIVM 

 

   

 

TABLE 23 DESCRIPTION OF DATASET HULSHORSTERZAND 

Monitoring Characteristics Type of measurement Elements included 

Reference Wamelink et al. (2001)  

Location Hulshorsterzand  

Ecosystem/vegetation 4 stages (bare soil to forest)  

Area   

Amount of replicates   

Period 1993-1994  

Frequency   

Soil Parameters (frequency) Soil type  

 Soil moisture  

 CEC  

 pH  

 Soil moisture  

 N mineralisation  
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Carbon and Nutrient pools 1994 C, N 

Soil moisture No  

Vegetation parameters Biomass: 1994  

   

Species composition Yes  

   

Meteo data Rainfall yearly From closest KNMI station 

Hydrology   

   

Deposition 

Taken from modelled maps by 

RIVM 

 

   

 

TABLE 24 DESCRIPTION OF DATASET SELLINGEN 

Monitoring Characteristics Type of measurement Elements included 

Reference Wamelink et al, 2001  

Location Sellingen  

Ecosystem/vegetation 4 stages Oak forest  

Area   

Amount of replicates   

Period 1999  

Frequency   

Soil Parameters (frequency) Soil type  

 Bulk density  

 CEC  

   

   

   

   

   

   

Carbon and Nutrient pools 1999 C, N 

Soil moisture 1996 pH, Na, K, Ca, Mg, Fe, SO
4

, Cl, 

NH
4

, NO
3

 

Vegetation parameters Biomass: 1999  

 Nutrient contents: 1999 N, K, Ca, Mg 

Species composition No  

   

Meteo data e.g. Rainfall, temperature Same as Hulshorsterzand 

Hydrology   

   

Deposition 

Taken from modelled maps by 

RIVM 

 

   

 

Datasets 

Meteo (resolution = 1 hour) 
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- solar radiation 

- net radiation 

- wet bulb T 

- dry bulb T 

- wind speed 

- wind direction 

- rainfall 

- albedo (sky) 

- albedo(ground) 

- soil T at 10 cm 

- soil T at 30 cm 

- nr. of minutes that the surface is wet 

- soil moisture (theta probe) 

 

Precipitation chemistry (resolution = weekly) 

- pH 

- conductivity 

- alkalinity 

- Na, K, Ca, Mg, Fe, Al, PO4-P, NOx-N, NH3-N, Cl, SO4-S, DOC, Total-N 

 

Soil solution (two depths (which?), six samples per depth and sampling event, every 

two weeks) 

- pH 

- conductivity 

- alkalinity 

- Na, K, Ca, Mg, Fe, Al, PO4-P, NOx-N, NH3-N, Cl, SO4-S, DOC, Total-N 

 

Vegetation surveys (2m × 2m plots for non-woodlands, 10m × 10m for woodlands) 

- plant species occurrence for approx. 100 plots 

 

Site descriptions of the ECN sites 

Alice Holt 

The history of Alice Holt forest can be traced back over 2000 years and is believed to have 

originated during the Atlantic period. Iron Age and Roman relics found within the forest 

point to a long history of human inhabitation. The forest has belonged to the crown since 

William the Conqueror adopted it as a Royal Hunting Forest. The Forestry Commission has 

actively managed the forest since 1924 and it has been the focus of research activities since 

1946. 

Alice Holt Forest Park covers 851 hectares of mainly Corsican pine but approximately 140 ha. 

of original 1820 oak still remain. The ancient forest is now a truly multi-purpose woodland 

where research, conservation, timber production and recreation co-exist. 

Min Altitude    110 m 

Max Altitude    125 m  

Area of Site    850 ha  

Mean annual temperature*  10.7 ºC  

Mean annual rainfall*   850 mm 
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Cairngorms 

The Cairngorms site, which joined the ECN network in summer 1999, is located high in the 

Cairngorms, near Aviemore in Speyside. The site lies on the western flank of the Cairngorms 

and is the catchment of the Allt a' Mharcaidh (a site in the ECN freshwater network). It is part 

of the Invereshie and Inshriach National Nature Reserve, within the Cairngorms National Park, 

and covers some 10 km2. The site is supported by a consortium of Scottish Natural Heritage 

(SNH), the Natural Environment Research Council (through the Centre for Ecology and 

Hydrology) and The James Hutton Institute (JHI). ECN monitoring at the site is co-ordinated 

by CEH. 

ECN Cairngorms is also part of the UK's first Long-Term Socio-Ecological Research platform, 

the Cairngorms National Park. 

This site is in the UK's sub-arctic zone and is an important link not only to other upland ECN 

sites but to sites in the Alps and Pyrenees (GLORIA network) and also to networks in the 

Arctic (SCANNET network and INTERACT project). 

Min Altitude    320 m  

Max Altitude    1110 m  

Area of Site    1000 ha  

Mean annual temperature*  4.7 ºC  

Mean annual rainfall*   872 mm 

 

Drayton 

A heavy clayland site, representative of 2 million hectares of similar soils in lowland England, 

where agricultural experiments have been conducted for 50 years. The farm system is based 

on autumn sown combinable crops and grassland. Hedges and ditches contribute to 

biological diversity. 

Min Altitude    40 m 

Max Altitude    80 m  

Area of Site    190 ha  

Mean annual temperature*  10.3 ºC  

Mean annual rainfall*   630 mm   

 

Hillsborough 

A lowland grassland site situated at the Agri-Food and Biosciences Institute, Co. Down, 

Northern Ireland and representative of grassland in much of the north-western United 

Kingdom. There are several long-term experiments, for example on slurry application and 

nitrogen cycling on grazed plots receiving different levels of nitrogen input. A large part of 

the site used for the biological aspects of ECN monitoring is estate woodland (Hillsborough 

Forest) consisting of mature mixed woodland and conifer plantation. Many of the vegetation 

plots are located within this forested area, as are sections of the butterfly, carabid beetle, 

spider and bird transects. 

Min Altitude    110 m  

Max Altitude    170 m  

Area of Site    400 ha  

Mean annual temperature*  9.2 ºC  

Mean annual rainfall*   1116 mm 
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Moor House 

This site lies in the North Pennine uplands of England. It is England's highest and largest 

terrestrial National Nature Reserve (NNR). Habitats include exposed summits, blanket 

peatlands, upland grasslands, pastures, hay meadows and deciduous woodland. A large part 

of the catchment of the River Tees, from its source near Great Dun Fell to High Force 

waterfall, is included in the reserve. The Trout Beck, which has its catchment entirely within 

the Moor House National Nature Reserve, is an ECN Freshwater Site 

Min Altitude    290 m 

Max Altitude    848 m  

Area of Site    7500 ha  

Mean annual temperature*  5.8 ºC  

Mean annual rainfall*   2044 mm   

 

North Wyke 

A lowland grassland site typical of conditions in wetter, western Britain, with predominately 

impermeable clays of the Culm Measures. Current research at North Wyke is helping to 

address some of agriculture’s most pressing challenges, for example mitigating and 

adapting to climate change, protecting natural resources and sustaining the rural economy 

in grassland dominated regions. 

Min Altitude    120 m  

Max Altitude    180 m  

Area of Site    250 ha  

Mean annual temperature*  9.9 ºC  

Mean annual rainfall*   1063 mm 

 

Porton 

As well as being a Site of Special Scientific Interest (SSSI), Porton Down is also a Special Area 

of Conservation (SAC) and a Special Protection Area (SPA) covering over 1500 hectares. It 

constitutes the largest uninterrupted tract of semi-natural chalk grassland in Britain, a 

habitat which has declined by more than 80% in the last 50 years. As well as the grassland 

the site supports large areas of mixed scrub, including juniper, and broadleaved, mixed and 

coniferous woodland. 

Min Altitude    m 

Max Altitude    m  

Area of Site    1227 ha  

Mean annual temperature*  9.7 ºC  

Mean annual rainfall*   803 mm 

 

Rothamsted 

The oldest continually functioning agricultural research station in the world. The 'Classical 

Experiments', started between 1843 and 1856, plus wilderness sites, have been used by 

successive generations of scientists and continue to form a unique resource for studying 

environmental change. 

Min Altitude    94 m  
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Max Altitude    134 m  

Area of Site    330 ha  

Mean annual temperature*  10.1 ºC  

Mean annual rainfall*   692 mm 

 

Snowdon 

Yr Wyddfa/Snowdon is an upland ECN site incorporating the summit of Yr Wyddfa or 

Snowdon, the highest mountain in England and Wales, 19km south-east of Bangor in North 

Wales. It is co-located with the Nant Teyrn freshwater site. The dominant vegetation is acidic 

grassland with Festuca ovina (sheep's fescue) and Agrostis species (bent grass) in the drier 

areas and Nardus stricta (mat grass) in the wetter areas. The site is part of the Yr 

Wyddfa/Snowdon National Nature Reserve, managed by Natural Resources Wales (NRW) 

under agreement with the owner. The land is unenclosed and grazed by sheep and a small 

herd of feral goats. 

Min Altitude    298 m  

Max Altitude    1085 m  

Area of Site    700 ha  

Mean annual temperature*  7.4 ºC  

Mean annual rainfall*   3784 mm  

 

Sourhope 

The ECN site at Sourhope lies 15 miles south-east of Kelso near the head of the Bowmont 

valley on the western slopes of the Cheviot. The site covers an area of approximately 1100 

hectares. The vegetation at the Target Sampling Site is representative of that across both the 

farm and many parts of the uplands in southern Scotland consisting of coarse grassland 

dominated by White bent (Nardus stricta) and Flying bent (Molinia caerulea). The site is 

relatively exposed and access can be difficult due to prolonged snow cover during the winter 

months. 

Min Altitude    200 m  

Max Altitude    601 m  

Area of Site   1119 ha  

Mean annual temperature*  7.4 ºC  

Mean annual rainfall*   971 mm 

 

Wytham 

Wytham is 5 km north west of Oxford. About half the site is woodland, the rest organic 

mixed farmland. Roughly a third of the wooded area is ancient woodland which, to our 

knowledge, has never been cleared and there has been continuity of tree cover since the 

prehistoric 'wild wood'. It has however had a long history of management, which for many 

hundreds of years took the form of coppicing. Within the woodland there are patches of 

semi-natural grassland, of both ancient and recent origin, and scrub. 

Min Altitude    60 m  

Max Altitude    165 m  

Area of Site    770 ha  

Mean annual temperature*  9.9 ºC  

Mean annual rainfall*   750 mm 


