Atmosferische depositie van pesticiden, PAK en PCB's in Nederland

 Ministerie van Volksgezondheid, Ruimtelijke Ordening en Milieubeheer

Rijksinstituut voor Volksgezondheid en Milieu

RIZAR

RIJW

RIYM

Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer
Atmosferische depositie van pesticiden, PAK en PCB’s in Nederland
Colofon:

Utrecht, 2003

Uitgave:
STOWA, Utrecht

Auteurs:
J.H. Duyzer, TNO
A.W. Vonk, TNO

Foto Omslag:
B. van der Wal

Druk:
Kruyt Grafisch Advies Bureau

STOWA rapportnummer 2003-01

ISBN nummer 90.5573.204.1
Ten Geleide

Regelmatig worden door de waterbeheerders bestrijdingsmiddelen en andere ongewenste stoffen in het water aangetroffen. Vaak rijst dan de vraag: waar komen deze stoffen vandaan?. De afgelopen jaren zijn veel bronnen in kaart gebracht. Een tot dusver onderbelichte bron is de atmosfeer. In het onderliggende rapport wordt het onderzoek beschreven dat is uitgevoerd om het belang van atmosferische depositie vast te stellen.

In het kader van de Interdepartementale Werkgroep Atmosferische Depositie (IWAD) is al sinds de tachtiger jaren onderzoek uitgevoerd naar atmosferische depositie. De eerste jaren werden vrijwel uitsluitend modelberekeningen gebruikt om de depositie in kaart te brengen. De onzekerheid in het resultaat van deze berekeningen was echter groot en de behoefte aan meetgegevens nam toe. Na uitgebreid vooronderzoek werd in 1999 gestart met een groot meetprogramma met als doel de depositie van pesticiden, PAK en PCB’s beter vast te stellen. In dit rapport worden de resultaten van dit meetprogramma uitgebreid besproken en worden conclusies getrokken.

Met de resultaten van dit onderzoek lijkt de grote onzekerheid in eerdere schattingen van de atmosferische depositie voor veel stoffen te zijn teruggebracht tot aanvaardbare niveaus. Daarmee vormt het rapport een goede basis voor het ontwikkelen van een evenwichtig beleid gericht op verbetering van de milieukwaliteit.

Voor een beperkt aantal stoffen is voor de verschillende waterschapsgebieden berekend:
1) wat de depositie in een beheersgebied is, en
2) wat de bijdrage van de emissies uit de verschillende provincies in zo’n gebied is.
Tevens is voor een aantal watertypen vastgesteld welke consequentie de atmosferische depositie voor de waterkwaliteit kan hebben.
Het onderzoek werd gefinancierd uit bijdragen van het Ministerie van Volkshuishoeing, Ruimtelijke Ordening en Milieubeheer (VROM), Ministerie van Verkeer en Waterstaat (V en W) (via het Rijksinstituut voor Kust en Zee (RIKZ), Rijksinstituut voor Integraal Zoetwaterbeheer en Afvalwaterbehandeling (RIZA) en de Directie IJsselmeergebied), de Stichting Toegepast Onderzoek Waterbeheer (STOWA), de provincie Noord-Holland, het Rijksinstituut voor Volksgezondheid en Milieu (RIVM) en TNO Doelfinanciering.
De leden van de IWAD, onder het voorzitterschap van het ministerie van VROM, hebben voor het project als begeleidingsgroep gefungeerd. De verschillende leden en voorzitters (aanvankelijk Douwe Jonkers, thans Hans Meijer) worden voor hun bijdrage in alle fasen van het onderzoek bedankt. Ton van der Linden (RIVM), Remi Laane (RIKZ) en Rob Faasen (RIZA) worden speciaal bedankt voor uitvoerig commentaar op conceptversies van dit rapport.

De directeur van de STOWA, Februari 2003

ir J.M.J. Leenen
Korte samenvatting

De afgelopen tien jaar hebben schattingen laten zien dat de atmosfeer een belangrijke diffuse bron van verontreiniging vormt voor het oppervlaktewater. Het gaat daarbij, onder andere, om verontreiniging met organische verbindingen zoals PAK, PCB’s en pesticiden en metalen. In een rapport van de Gezondheidsraad van 1998 werd het belang van dit proces voor pesticiden nogmaals benadrukt. De schattingen van de belasting vanuit de atmosfeer waren gebaseerd op berekeningen met modellen. In deze modellen wordt de verspreiding berekend van stoffen, die in de atmosfeer worden geëmis, door de onzekerheid in deze schattingen was echter erg groot, mede door het gebrek aan validiteit. Voor pesticiden werd een onzekerheid van een factor vijf tot tien geschat. In 1999 werd in het kader van de Interdepartementale Werkgroep Atmosferische Depositie (IWAD) een onderzoeksproject gestart. Het doel van het onderzoek was vooral het vaststellen van de atmosferische depositie op het Nederlandse grondgebied. Het project is uitgevoerd door TNO-MEP en gefinancierd uit bijdragen van het ministerie van VROM, het ministerie van V en W (via het RIKZ, RIZA en de TNO doelfinanciering), het ministerie van LNV (via de TNO doelfinanciering) en de STOWA. Later in 1999 werd het programma uitgebreid door bijdragen van de Provincie Noord-Holland en Rijkswaterstaat Directie IJsselmeergebied. In 2001 werd een aanvullende bijdrage ontvangen van het RIVM. Vanaf zomer 1999 tot en met december 2001 zijn monsters neerslag en lucht geheven en 18 locaties verspreid over Nederland. De monsters werden onderzocht op het gehalte pesticiden, PAK en PCB’s. Aanvullend op de metingen werden modellberekeningen uitgevoerd met behulp van het OPS model van het RIVM en gebaseerd op schattingen van de emissies. De schattingen van de emissies van pesticiden in Nederland werden opgesteld door ALTERRA op basis van gebruikscijfers. De schattingen van emissies van de andere stoffen en van pesticiden in het buiteland werden opgesteld door TNO op basis van gegevens over landgebruik en Nederlandse gegevens over emissies.

De meetgegevens zijn uitgebreid geanalyseerd. Daarbij zijn twee gezichtspunten van belang. Enerzijds vormt atmosferische depositie een chronische belasting van het Nederlandse oppervlaktewater voor een aantal stoffen. Het belang van deze bron (de vrach) kan worden afgezet tegen andere bronnen zoals uitspoeling. Anderzijds kan atmosferische depositie in de omgeving van de bron in bepaalde perioden mogelijk leiden tot hoge concentraties in het oppervlaktewater. Bij gebrek aan normen voor neerslag en lucht voor de meeste stoffen geeft een vergelijking met MTR waarden voor oppervlaktewater dan inzicht. Op basis van het onderzoek zijn de volgende conclusies getrokken:

- Samenhangend met het gebruik in bepaalde perioden en gebieden vertoont de depositie van pesticiden een sterk verloop door het jaar en door het land. De jaarlijkse depositie kan daarnaast, door verschillen in gebruik, ook van jaar tot jaar verschillen tot een factor twee vertonen.
- Atmosferische depositie vormt voor sommige pesticiden en PAK een belangrijke belasting voor het binnenlands oppervlaktewater:
 1. De gemeten belasting van het oppervlaktewater (uitgedrukt als jaarvracht) in Nederland door atmosferische depositie met pesticiden is van dezelfde orde van grootte als die door drift of die door laterale uitspoeling.
 2. De gemeten belasting door atmosferische depositie van PAK (jaarvracht) is vrijwel even groot als de andere vormen van belasting.
 3. Voor HCB, PCB’s en pentachloorfenol is de atmosferische route veel belangrijker dan andere routes.

- Berekeningen voor enkele stoffen met een eenvoudig model van het oppervlaktewater laten zien, dat de jaargemiddelde belasting door atmosferische depositie alleen waarschijnlijk niet leidt tot overschrijding van het MTR in het oppervlaktewater. Atmosferische depositie kan wel bijdragen aan de belasting door andere bronnen waardoor overschrijding eerder op kan treden. Voor sommige pesticiden kan de hoge belasting door atmosferische depositie in bepaalde periodes van het jaar en in specifieke regio waarschijnlijk wel leiden tot overschrijding van het MTR in die periode.

- De modelberekeningen geven voor enkele stoffen aan dat het VR (Verwaarloosbaar Risico) niveau in oppervlaktewater wel door atmosferische depositie alleen kan worden overschreden.

- Ook de belasting naar de bodem in Nederland (jaarvracht) is geschat. Door het ontbreken van kennis en betrouwbare gegevens zijn schattingen van de depositie naar bodem echter relatief onzeker. Vergelijking met de belasting door andere bronnen is vaak lastig do omdenkomen van goede gegevens. Voor natuurgebieden is de belasting vanuit de atmosfeer echter vaak de enige bron.

- In het algemeen blijkt het OPS model goed bruikbaar om de depositie van pesticiden te berekenen. Het verschil tussen gemeten en berekende deposities was minder dan een factor twee, voor ruim de helft van de stoffen. Voor de rest van de stoffen werden grotere verschillen gevonden. Deze verschillen worden waarschijnlijk veroorzaakt door onjuistheden in de gebruikte schattingen van de emissie. De verschillen tussen de berekende en gemeten depositie van twee verschillende PAK bedroegen een factor twee tot drie.

Bovenstaande conclusies zijn afgeleid uit het huidige onderzoek. Ondanks de brede aanpak zijn er uiteraard enkele beperkingen die samenhangen met de gekozen opzet:
- Er is gekozen voor een representatief middelenpakket. Een belangrijke groep pesticiden zoals de bis-dithio-carbamaten (maneb cs) en enkele belangrijke stoffen zoals glyfosaat, diuron en carbendazim, zijn echter niet, dan wel in beperkte mate, in het onderzoek betrokken.
- De locatie van de meetstations was gericht op het verkrijgen van een landelijk beeld met specifieke aandacht voor verschillen tussen de regio’s. De meetlocaties zijn daarom zodanig gesitueerd dat beïnvloeding door lokale bronnen minimaal is. In de directe omgeving van bronnen, bijvoorbeeld binnen een straal van een kilometer rond belangrijke bronnen zou de depositie aanzienlijk hoger kunnen zijn en gemakkelijk aanleiding kunnen geven tot overschrijding van MTR niveaus.
- Naast de directe belasting is er ook de indirecte belasting. Dit is de depositie op het land die door afspoeling in het oppervlaktewater terechtkomt. De bovenstaande conclusies zijn gebaseerd op de gemeten depositie exclusief deze indirecte depositie. De grootte van deze indirecte belasting is echter erg onzeker. Eerste schattingen laten zien dat deze route even groot zou kunnen zijn als de directe depositie, waardoor de totale atmosferische belasting nog eens tweemaal zo hoog kan worden.
Vergelijking met normconcentraties zoals het MTR is alleen mogelijk voor individuele stoffen. Het effect van de depositie door een combinatie van een groot aantal stoffen is niet onderzocht.

Aanbevelingen
- Monitoren van de atmosferische depositie
 Op basis van de resultaten van de studie wordt een aanzet gegeven voor een strategie gericht op monitoring van de depositie in Nederland. Deze bestaat uit een combinatie van schattingen van de depositie aan de hand van modelberekeningen en een beperkt landelijk meetnet. Aanbevolen wordt het resultaat van de modelberekeningen formeel op te nemen in de Emissieregistratie. Door deze werkwijze kunnen waterkwaliteitsbeheerders en andere belanghebbenden beschikken over consistentie schattingen van de depositie in hun (beheers)gebied. Het doel van het meetnet is, onder andere, het vaststellen van de werkelijke belasting met PAK, PCB’s en pesticiden, het toetsen van de modellen en het volgen van ontwikkelingen in het vóórkomen van pesticiden in samenhang met veranderingen in het middelenpakket.
- Toelatingsbeleid
 Gezien het vastgestelde belang van atmosferische depositie lijken er argumenten aanwezig om de route via atmosferische depositie in het toelatingsproces van bestrijdingsmiddelen mee te nemen. Er zijn goede mogelijkheden aanwezig de beschikbare kennis om te vormen naar een instrument dat gebruikt kan worden in de toelatingsbeoordeling. In een pilotstudy zouden de mogelijkheden hiervoor kunnen worden onderzocht.
Uitgebreide samenvatting

S.1 Inleiding

De onzekerheid in de gemaakte schattingen is echter zeer groot. Dit hangt, onder andere, samen met het gebrek aan goede gegevens over de emissie van de verschillende stoffen. Bovendien ontbreken metingen die het mogelijk maken de gemaakte schattingen te valideren.

S.1.1 Het project

De Interdepartementale Werkgroep Atmosferische Depositie (IWAD) is al enige jaren bezig met het initiëren van onderzoek gericht op het verkleinen van de onzekerheid in schattingen van de depositie van persistente verbindingen. Na een eerste studie, waarin modellberekeningen werden uitgevoerd, werd een lijn uitgezet gericht op het verkleinen van de onzekerheid door middel van metingen. Vervolgens werd een eerste strategie voor een meetprogramma ontwikkeld. Daarna werden in een pilotstudie meetmethoden ontwikkeld, getoetst en op beperkte schaal ingezet. Deze studie gaf aan dat het goed mogelijk is metingen van de depositie uit te voeren. Uiteindelijk werd een enquête uitgevoerd onder alle bij de problematiek van de atmosferische depositie betrokken instanties, zoals waterkwaliteitsbeheerders, Rijkswaterstaat en Ministeries. In de enquête werd de behoefte aan informatie bij de betrokkenen geïnventariseerd. Op basis van de resultaten van die enquête werd een uitgebreid programma opgesteld.

In het voorjaar van 1999 werd gestart met het programma waarvan het doel als volgt was geformuleerd:

Het bepalen van de belasting van de kustwateren en de Noordzee (met nadruk op het Nederlands Continentaal Plaat) en het Nederlands grondgebied (water en bodem) met persistente organische verbindingen (POP) vanuit de atmosfeer en het aangeven van de bronnen van deze belasting. Als resultaat van dit onderzoek wordt zowel op nationale als op regionale schaal overzicht van het belang van atmosferische depositie verkregen. In de toekomst zal een strategie moeten worden ontwikkeld, gericht op het monitoren van ontwikkelingen in de depositie.

In het thans voorliggende rapport worden de resultaten van het complete programma gepresenteerd. In deze uitgebreide samenvatting wordt eerst het programma beschreven, vervolgens worden de resultaten gepresenteerd en besproken. Ten slotte worden conclusies getrokken.

S.1.2 De processen

De hier bestudeerde stoffen komen op verschillende manier in de lucht terecht. PAK komen vrij bij verbrandingsprocessen, PCB’s verdampen uit, in het verleden gebruikte, transformatoren en condensatoren en pesticiden verdampen tijdens en na de toepassing. In de lucht gekomen worden stoffen getransporteerd door de wind en daarbij verdund. Tijdens het transport door de lucht staan ze aan allerlei processen bloot. De belangrijkste zijn: opname aan in lucht zwevende deeltjes, omzetting door ozon of radicalen, fotolyse, en depositie. Veel van de hier bestudeerde stoffen hebben een lage dampspanning en zullen snel aan in de lucht zwevend stof worden opgenomen. Ze worden dan als deeltjes (fijn stof of aërosol) door de lucht getransporteerd.

Atmosferische depositie is het proces waarbij stoffen worden getransporteerd naar het aardoppervlak (zowel land als wateroppervlak) en daar worden opgenomen. Daarbij is natte depositie het proces waarbij stoffen worden opgenomen in neerslag. Droge depositie is het proces waarbij stoffen door turbulentie in contact komen met het aardoppervlak en daar worden opgenomen. Zo kunnen goed oplosbare stoffen gewoon in oppervlaktewater op worden genomen.

Het meten van natte depositie is relatief eenvoudig. De concentratie van een stof in neerslag wordt bepaald. De natte depositie is dan de gemiddelde concentratie vermenigvuldigd met de hoeveelheid neerslag. Het meten van droge depositie is erg lastig. In dit onderzoek wordt volstaan met een meting van de concentratie in lucht. Uit deze concentratie wordt met behulp van de zogenaamde droge depositiesnelheid de depositieflux berekend. Deze depositiesnelheid is afhankelijk van de stoff eigenschappen en van de eigenschappen van het oppervlak waarop de depositie plaatsvindt.

S.2 Werkwijze

In het uitgevoerde programma worden metingen en modelberekeningen uitgevoerd.

S.2.1 Metingen

Gedurende een periode van ruim twee jaar zijn op achttien locaties monsters neerslag en lucht genomen. Op de meeste stations werden steeds, gedurende perioden van vier weken, monsters genomen. Op drie stations werden wekelijks luchtmeters verzameld. De luchtmeters werden verzameld met behulp van hoog-volume pompens, die lucht aanzuigen door een filter-foam combinatie en een adsorptiemiddel. Neerslagmonsters werden verzameld met een zogenaamde wet-only sampler. De monsters zijn geanalyseerd op een groot aantal verbindingen met behulp van gaschromatografie gekoppeld met massa-spectrometrie (GC/MS) De monsters zijn geanalyseerd op hun gehalte aan PCB’s, PAK en pesticiden. Daaronder zijn de zeven indicator-PCB’s en de zestien PAK van EPA. Ook is onderzocht in hoeverre PAK in de gasfase dan wel gebon-
den aan deeltjes voorkomen. De concentratie van pesticiden werd in alle monsters bepaald, die van PAK en PCB’s in de monsters van negen stations. Er wordt in Nederland en de rest van Europa een zeer grote groep van gewasbeschermingsmiddelen gebruikt. Alleen al in Nederland zijn ruim tweehonderd werkzame stoffen als pesticiden toegelaten voor gebruik in de landbouw. Het is onmogelijk alle gebruikte stoffen volgens één monsternemingsmethode en analysemethode in lage concentraties te bepalen. Teneinde de kosten te beperken is daarom een keuze gemaakt uit de voorkomende stoffen. Er is vervolgens een specifieke methode ontwikkeld waarmee een grote groep belangrijke stoffen kan worden bepaald. De volgende aspecten hebben bij de selectie een rol gespeeld:

- het voorkomen van stoffen in oppervlaktewater en in neerslag
- voorkeuren van opdrachtgevers
- een representatieve keuze, gelet op toepassing (herbicide, insecticide, enz.), teelten en toelatingsstatus (wel of niet toegelaten stoffen)
- de mogelijkheid de stof in de verwachte, lage, concentratie te kunnen bepalen.

Gedurende het eerste jaar zijn de monsters van vier locaties op een aanvullende groep stoffen onderzocht. Op basis van deze uitkomsten is het analysepakket in het tweede jaar aangepast. Gedurende het eerste jaar is ook op vier locaties onderzoek verricht naar het voorkomen van trifénylilin en enkele polaire pesticiden zoals carbendazim en diuron. Bij deze laatste groep was de detectiegrens echter relatief hoog waardoor de kans op het aantreffen van de stoffen klein was.

De locaties waarop de monsters zijn genomen zijn zodanig over Nederland verdeeld, dat een redelijke ruimtelijke dekking over Nederland wordt bereikt. Bovendien zijn locaties in de nabijheid van gebieden met specifieke agrarische activiteiten, en daaraan gerelateerd gebruik van bestrijdingsmiddelen, geselecteerd. Door deze werkwijze wordt zowel een goed ruimtelijk overzicht verkregen, als inzicht in de situatie in de verschillende regio’s, met verschillende agrarische activiteiten. De locaties van de meetstations werden zorgvuldig geselecteerd, waarbij specifiek aandacht werd besteed aan hun ligging ten opzichte van bronnen en de beïnvloeding door obstakels zoals gebouwen. De metingen op deze locaties geven een goed beeld van de atmosferische depositie in de betrokken gebieden en geven ook goed aan hoe deze over Nederland varieert. Volgens een zeer ruwe analyse zijn de meetstations representatief op schalen van 50 bij 50 km. Door de gemaakte keuzen komt met het huidige meetnet de depositie dichter bij bronnen niet in beeld. Inzicht in de depositie op deze schaal vereist een andere opzet van het onderzoek.

Met financiering van de provincie werden extra meetstations in Noord-Holland geplaatst. De dichtheid van de meetstations is daar dus hoger.

S.2.2 Modelberekeningen

Met een verspreidingsmodel wordt berekend hoe stoffen door de atmosfeer worden verspreid. Daarbij wordt rekening gehouden met de processen waardoor stoffen uit de atmosfeer worden verwijderd zoals droge depositie (verticaal transport naar het aardoppervlak), natte depositie en afbraak.

Op basis van gegevens over de ruimtelijke verdeling van emissies van stoffen, hun fysisch-chemische eigenschappen en meteorologische omstandigheden kan met een model de depositie over een gebied berekend worden. Het aantrekkelijke van modelberekeningen is, dat inzicht ontstaat in de relatie tussen emissies, (en veranderingen daarin), en de depositie. Bovendien kunnen voor elke plaats berekeningen worden gemaakt en kunnen deposits voor een specifieke regio (bijvoorbeeld waterstroomgebieden) worden afgeleid.
Deze eigenschappen maken modellen uitermate geschikt voor onderzoek naar de mogelijke effecten van beleidsmaatregelen op de depositie. De onzekerheid in het resultaat van modelberekeningen is echter vaak zo groot, dat de geschiktheid voor het gebruik voor beleidsontwikkeling beperkt is. In het hier beschreven onderzoek wordt, op basis van de vergelijking van de gemeten en berekende concentraties en deposities, een eerste uitspraak gedaan over de kwaliteit van modelberekeningen voor een groot aantal stoffen.

Een bijkomend voordeel van modelberekeningen is de mogelijkheid voor zogenaamde *herkomstanalyse*. Aangezien met de modellen een relatie gelegd kan worden tussen emissie op een bepaalde locatie en depositie elders, kan nagegaan worden, in hoeverre bepaalde bronnen verantwoordelijk zijn voor de depositie in een gebied.

In het hier beschreven onderzoek zijn berekeningen uitgevoerd op basis van gegevens over de emissie uit de Emissieregistratie (voor PAK) en een emissie-berekening voor pesticiden uitgevoerd door ALTERRA, in het kader van de MJP-G evaluatie. De schattingen van emissies van de andere stoffen werden betrokken uit de Emissieregistratie. De emissies van pesticiden in het buitenland werden berekend door TNO.

S.3 Meetresultaten

Een uitvoerige analyse van de metingen werd uitgevoerd. In het rapport staan overzichten van een groot aantal gegevens, zoals de gemiddelde concentratie en depositie van alle stoffen. Deze worden besproken en vergeleken met kwaliteitsnormen voor oppervlaktewater. Voor een aantal veel voorkomende stoffen zijn de gemeten waarden vergeleken met waarden berekend met het verspreidingsmodel OPS.

De belangrijkste resultaten en conclusies worden hierna kort besproken:

S.3.1 Concentratie in lucht

De concentratie van PAK in luchtmonsters was meestal goed meetbaar. Bepaling van de concentratie van PCB’s en pesticiden was veel lastiger. Veel stoffen werden slechts enkele malen aangetroffen. In totaal werden zo’n 50 verschillende pesticiden één of meerdere keren in lucht aangetroffen. Daarvan kwamen chloorprofam, dichlofenol, DNOC, fluazinam, hexachloorbenzeen, pentachloorfenol, procymidon, propachloor, triallaat, trifuralin, chloorthalonil, kresoxim-methyl en vinclozolin veel voor. Daarnaast werden enkele zeer persistente (en lang verboden) stoffen zoals endrin en telodrin, o.p-DDD en o.p-DDE, enkele keren, aangetoond. Ook een groot aantal, meer recentelijk in Nederland verboden stoffen, zoals atrazin, endosulfan enz. werden regelmatig aantreffen. Aldrin, deltamethrin, dicofol, disulfoton, fenitrothion, fenthion, fosfamidon, heptenofos, metamitron, methomyl, parathion-methyl, triadimenol en 2,4-D konden niet in luchtmonsters worden aangetoond.

S.3.2 Concentratie in neerslag

De concentratie van PAK in neerslagmonsters kon ook zeer goed worden vastgesteld. PCB’s en veel pesticiden konden veel minder vaak worden aangetoond, al was de detectie minder vaak een probleem dan in de luchtmonsters. Ook in neerslag werden zo’n 50 verschillende pesticiden aangetroffen. Daaronder was een aantal verboden persistentie stoffen zoals o.p-DDD en een groot aantal recentelijk in Nederland verboden stoffen zoals trifuralin en atrazin. Niet in neerslag konden worden aangetoond: aldrin, bitertanol, deltamethrin, demeton-S-methyl, dicofol, disulfoton, endrin, fosfamidon, heptachloor, heptachlorepoxide, heptenofos, methomyl, o.p’-DDE, telodrin, triadimenol en triazofos.
Op een aantal monsters werden analyses uitgevoerd met behulp van een LC-MS methode, waarmee de meer polaire pesticiden kunnen worden aangetoond. Van deze groep werd alleen *isoproturon* regelmatig aangetroffen.

S.3.3 Verdeling over de fasen

Zoals hiervoor vermeldt zullen stoffen in lucht zich verdelen over de gasfase en de deeltjesfase (zwevend stof of aërosol) afhankelijk van hun dampspanning en de concentratie van deeltjes. Deze verdeling bepaalt hoe de stof zich in de atmosfeer gedraagt. Voor de modellering van de verspreiding door de lucht en de depositie is het daarom belangrijk hoe een stof is verdeeld over deze twee fasen. De verdeling van de PAK en PCB’s tussen de gasfase en de aërosolfase en het voorkomen van stoffen in de lucht dan wel in de neerslag kan goed worden verklaard op basis van theoretische overwegingen. Voor de pesticiden is de overeenkomst tussen de theoretische en waargenomen verdelingen slecht te noemen. Naar een verklaring voor deze afwijking is geen uitgebreid onderzoek gedaan. Waarschijnlijk spelen de kwaliteit van de, in de vergelijking gebruikte, parameters, zoals de dampspanning en de Henry-coëfficiënt, de kennis over de snelheid waarmee het evenwicht tussen gasfase en deeltjesfase zich instelt in relatie tot de transportafstand door de atmosfeer evenals meetartefacten, die samenhangen met de detectiegrens, hierbij een rol.

In welke mate een stof in neerslag wordt opgenomen hangt ook af van allerlei fysische parameters zoals de dampspanning en de oplosbaarheid in de neerslag. Voor PAK en PCB’s was de overeenkomst tussen de verwachte verhouding tussen de concentratie in neerslag en die in lucht, enerzijds en de waargenomen verhouding anderzijds, goed. Voor de groep pesticiden kwamen deze verhoudingen totaal niet overeen.

S.3.4 Vergelijking met normen

Er zijn op dit moment vrijwel geen kwaliteitsnorm voor de concentratie van pesticiden, PCB’s en PAK in lucht of neerslag. Alleen voor *benzo[a]pyreen* geldt een norm voor lucht. De MTR- waarde voor de concentratie van *benzo[a]pyreen* (1 ng/m³) in lucht werd echter op geen van de meetlocaties overschreden.

Om toch de hoogte van de waargenomen concentraties te kunnen beoordelen is een vergelijking gemaakt met de kwaliteitsnormen voor oppervlaktewater. Vergelijking met deze normen heeft daarom geen formele of wetenschappelijke betekenis, maar dient als een eerste indicatie. De concentratie in neerslag van achtien verschillende pesticiden overschreed één of meerdere keren het MTR-niveau voor oppervlaktewater. Het betrof zeven insecticiden, vier herbiciden, vier fungiciden en twee stoffen die als insecticide/acaricide gebruikt worden. Daarnaast werd *methiocarb*, een stof met een brede toepassing, boven het MTR aangetroffen. *Dichlorom* en *chlorothalonil* werden in meer dan 20% van de neerslag monsters boven het MTR niveau aangetroffen. Ook de concentratie van *trifenyltin* overschreed vaak het MTR, voornamelijk in Veendam en Yerseke. De concentratie van deze stof in Anna Paulowna en Lelystad overschreden slechts een enkele keer het MTR. Van de PAK overschreden de concentraties van *benzo[a]-antraceen, benzo[k]-fluoranteen, fenantreen en fluoranteen* enkele keren het MTR-niveau voor oppervlaktewater.

De concentratie in neerslag van tweééiwintig pesticiden overschreden één of meerdere malen de drinkwaternorm van 100 ng/l: acht fungiciden, tien herbiciden, twee insecticiden en twee stoffen die als insecticide en acaricide worden gebruikt. Vooral *propachloor* en *chloroprofan* vallen daarbij op door de hoogte en de frequentie van de overschrijding. *DNOC*, een stof met een brede toepassing, overschreed op alle stations de drinkwater norm. Van de polaire pesticiden overschreed alleen *isoproturon* de drinkwaternorm.
Verder werden opvallend hoge concentraties aangetroffen voor *fenantreen, fluoranteen* en *pyreen*. In het jaar 2000 was de concentratie van de Borneff-PAK in neerslag gemiddeld iets hoger dan de norm van 200 ng/l. In 2001 was de concentratie zo’n 25% lager dan deze waarde. De concentraties van benzo[a]pyreen, benzo[b]fluorantheen, benzo[k]fluorantheen, indeno[ghi]fluorantheen en fluoranteen overschreden afzonderlijk enkele malen de normen van 200 ng/l in neerslagmonsters.

Overschrijding van normen in het oppervlaktewater als gevolg van atmosferische depositie

Aan de hand van berekeningen met een eenvoudig model voor de verspreiding van stoffen in het oppervlaktewater is voor enkele stoffen onderzocht, in hoeverre atmosferische depositie kan leiden tot overschrijding van de kwaliteitsnormen voor oppervlaktewater (MTR respectievelijk VR) Daarbij zijn verschillende karakteristieke watersystemen onderzocht. Het gevoeligst zijn daarbij vennen die vrijwel uitsluitend via neerslag worden gevoed. Uit deze berekeningen blijkt dat de jaargemiddelde belasting waarschijnlijk niet snel zal leiden tot overschrijding van het MTR. Voor enkele stoffen wordt het VR niveau als gevolg van deze belasting in verschillende wateren echter wel overschreden.

Op dit moment zijn alleen normen voor enkelvoudige stoffen beschikbaar. Het is niet duidelijk in hoeverre de combinatie van een groot aantal stoffen leidt tot effecten. Dit zou bijvoorbeeld aan de hand van bio-essays kunnen worden onderzocht.

De gemaakte modellenberekeningen zijn uitgevoerd voor landelijk representatieve niveaus. De depositie kent voor de meeste stoffen echter een sterk verloop over het jaar. Daarnaast is er de grote spreiding in de depositie over het land. Het resultaat van de berekeningen suggereert dat de hoge deposits die, in sommige gebieden in het voorjaar en de zomer worden gemeten, wel zouden kunnen leiden tot overschrijdingen van het MTR niveau gedurende die periode. Zoals uit al eerder uitgevoerd onderzoek bleek, kan dichter bij bronnen de depositie nog veel hoger zijn. Berekeningen met een atmosferisch verspreidingsmodel tonen aan dat op één kilometer van een bron de depositie wel een factor vijftig hoger kan zijn dan op een afstand van tien kilometer. De kans op overschrijding van kritische niveaus is daar dus groter. Dichtbij belangrijke brongebieden zou de depositie nog veel hoger kunnen zijn.

S.4 De belasting van Nederland door atmosferische depositie (vrachten)

De vracht door droge depositie op de meetlocaties is berekend op basis van de gemeten concentratie in lucht en een schatting van de depositiesnelheid, gebaseerd op eenvoudige modellen. Samen met de gemeten natte depositie geeft deze droge depositie de totale depositie naar het oppervlaktewater en de bodem. Het aandeel van de natte depositie in de totale vracht door atmosferische depositie is het laagst voor de vluchtige PAK’s en PCB’s en het hoogst voor de minder vluchtige PAK’s en PCB’s. Voor de verschillende pesticiden varieert de verhouding tussen natte en droge depositie zeer sterk tussen de verschillende stoffen.

De tabel geeft een overzicht van de depositie van het Nederlands oppervlaktewater (exclusief de grote wateren), de Waddenzee, het IJsselmeer en de Nederlandse bodem voor het jaar 2001. Voor de bepaling van de depositie schatting zijn steeds gegevens gebruikt van de stations die het meest representatief zijn voor het betrokken gebied. De schattingen van de depositie op de Noordzee zijn onzeker omdat geen rekening is gehouden met het verloop van de concentratie over de Noordzee. De depositie op het bedoelde gebied in de Noordzee is waarschijnlijk lager dan hier aangegeven.

Op verzoek van de provincie Noord-Holland zijn schattingen opgenomen van de depositie in deze provincie.
De atmosferische depositie van pesticiden naar het Nederlands oppervlaktewater in het jaar 2000 (exclusief grote wateren 2.793 km²), het oppervlaktewater in Noord-Holland (800 km²), de Waddenzee (2.600 km²), het IJsselmeer¹ (1.928 km²) en Nederlandse bodem (36.783 km²) in (kg/jr).

<table>
<thead>
<tr>
<th>Atmosferische depositie</th>
<th>Oppervlakte water Nederland</th>
<th>Oppervlakte water Noord-Holland</th>
<th>Noordzee²</th>
<th>Waddenzee</th>
<th>IJsselmeer³</th>
<th>Bodem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/jr</td>
<td>ton/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
</tr>
<tr>
<td>2,4-D</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>49</td>
</tr>
<tr>
<td>Atrazine</td>
<td>25</td>
<td>6</td>
<td>3</td>
<td>17</td>
<td>13</td>
<td>333</td>
</tr>
<tr>
<td>Bentazon</td>
<td>7</td>
<td>1</td>
<td>0,04</td>
<td>1</td>
<td>6</td>
<td>65</td>
</tr>
<tr>
<td>Captan</td>
<td>85</td>
<td>29</td>
<td>4</td>
<td>30</td>
<td>53</td>
<td>432</td>
</tr>
<tr>
<td>Chloopyrophosph-methyl</td>
<td>1</td>
<td>0,2</td>
<td>0,02</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Chloothanolin</td>
<td>38,1</td>
<td>15</td>
<td>3</td>
<td>61</td>
<td>30</td>
<td>298</td>
</tr>
<tr>
<td>Diazinon</td>
<td>1</td>
<td>1</td>
<td>0,1</td>
<td>2</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Dichlobenil</td>
<td>443,7</td>
<td>140</td>
<td>42</td>
<td>352</td>
<td>356</td>
<td>362</td>
</tr>
<tr>
<td>Dichlorovos</td>
<td>19,3</td>
<td>4</td>
<td>0,2</td>
<td>5</td>
<td>8</td>
<td>132</td>
</tr>
<tr>
<td>Dimethoat</td>
<td>3</td>
<td>0,2</td>
<td>0,1</td>
<td>0</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>DNOC</td>
<td>1209</td>
<td>324</td>
<td>181</td>
<td>1207</td>
<td>879</td>
<td>14057</td>
</tr>
<tr>
<td>endosulfan II</td>
<td>0,8</td>
<td>0,1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>epoxiconazol</td>
<td>6</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>39</td>
</tr>
<tr>
<td>ethofumesaat</td>
<td>34</td>
<td>7</td>
<td>5</td>
<td>23</td>
<td>19</td>
<td>267</td>
</tr>
<tr>
<td>fluanzinam</td>
<td>53</td>
<td>11</td>
<td>4</td>
<td>48</td>
<td>56</td>
<td>556</td>
</tr>
<tr>
<td>fluroxypyr</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>heptachlo epoxide</td>
<td>1,8</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>hexachloobenzeen</td>
<td>2</td>
<td>1</td>
<td>0,1</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Kresoxim-methyl</td>
<td>16</td>
<td>4</td>
<td>2</td>
<td>19</td>
<td>10</td>
<td>172</td>
</tr>
<tr>
<td>Lindaan</td>
<td>23</td>
<td>8</td>
<td>2</td>
<td>15</td>
<td>11</td>
<td>248</td>
</tr>
<tr>
<td>MCPA</td>
<td>13</td>
<td>5</td>
<td>3</td>
<td>16</td>
<td>6</td>
<td>165</td>
</tr>
<tr>
<td>mecoprop</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>13</td>
<td>6</td>
<td>153</td>
</tr>
<tr>
<td>methiocarb</td>
<td>7</td>
<td>3</td>
<td>0,2</td>
<td>11</td>
<td>3</td>
<td>83</td>
</tr>
<tr>
<td>metolachlor</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>72</td>
</tr>
<tr>
<td>mevinfos</td>
<td>3</td>
<td>1</td>
<td>0,4</td>
<td>4</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>o,p'-DDD</td>
<td>1,1</td>
<td>0,02</td>
<td>0,5</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Pentachloofenol (PCP)</td>
<td>28</td>
<td>11</td>
<td>3</td>
<td>20</td>
<td>23</td>
<td>137</td>
</tr>
<tr>
<td>pentachlooreenzen</td>
<td>0,6</td>
<td>0,3</td>
<td>0,1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>pirimicarb</td>
<td>1,1</td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>pirimifos-methyl</td>
<td>352</td>
<td>88</td>
<td>50</td>
<td>312</td>
<td>397</td>
<td>456</td>
</tr>
<tr>
<td>procymidon</td>
<td>13</td>
<td>6</td>
<td>1</td>
<td>14</td>
<td>6</td>
<td>109</td>
</tr>
<tr>
<td>propachloor</td>
<td>194</td>
<td>50</td>
<td>15</td>
<td>188</td>
<td>279</td>
<td>1685</td>
</tr>
<tr>
<td>propoxur</td>
<td>1</td>
<td>0,5</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>terbutylazine</td>
<td>29</td>
<td>6</td>
<td>3</td>
<td>16</td>
<td>12</td>
<td>264</td>
</tr>
<tr>
<td>tetrabromobisfenol A</td>
<td>7</td>
<td>3</td>
<td>0,3</td>
<td>2</td>
<td>5</td>
<td>92</td>
</tr>
<tr>
<td>toclofos-methyl</td>
<td>12</td>
<td>13</td>
<td>0,1</td>
<td>43</td>
<td>11</td>
<td>74</td>
</tr>
<tr>
<td>Triallaat</td>
<td>80</td>
<td>14</td>
<td>10</td>
<td>69</td>
<td>47</td>
<td>115</td>
</tr>
<tr>
<td>triflurozin</td>
<td>85</td>
<td>32</td>
<td>11</td>
<td>88</td>
<td>54</td>
<td>124</td>
</tr>
<tr>
<td>vinclozolin</td>
<td>107</td>
<td>31</td>
<td>3</td>
<td>117</td>
<td>126</td>
<td>687</td>
</tr>
</tbody>
</table>

¹ Met het IJsselmeer wordt bedoeld de Rijkswateren in het IJsselmeergebied.
² De schatting van de depositie op de Noordzee is onzeker (Zie tekst).

Tabel 2

De atmosferische depositie van PAK en PCB naar het Nederlands oppervlaktewater (2.793 km²), het oppervlaktewater in Noord-Holland (800 km²), de Noordzee (508126 km² in ton/jr), de Waddenzee (2.600 km²), het IJssmeer² (1.928 km²) en Nederlandse bodem (36.783 km²) in (kg/jr).

<table>
<thead>
<tr>
<th>Atmosferische depositie</th>
<th>Oppervlakte water</th>
<th>Oppervlakte water Noord-Holland 2001</th>
<th>Noordzee²</th>
<th>Waddenzee</th>
<th>IJssmeer³</th>
<th>Bodem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>ton/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
</tr>
</tbody>
</table>

PAK

- acenaïfen: 454 kg/jr, 139 ton/jr, 836 kg/jr, 268 kg/jr, 498 kg/jr
- acenafyleen: 44 kg/jr, 13 kg/jr, 78 kg/jr, 23 kg/jr, 98 kg/jr
- antraceen: 46 kg/jr, 13 kg/jr, 81 kg/jr, 23 kg/jr, 162 kg/jr
- benzo[a]antraceen: 19 kg/jr, 6 ton/jr, 35 kg/jr, 12 kg/jr, 207 kg/jr
- benzo[a]pyreene: 30 kg/jr, 10 ton/jr, 56 kg/jr, 18 kg/jr, 170 kg/jr
- benzo[b]fluoranteen: 82 kg/jr, 29 ton/jr, 151 kg/jr, 48 kg/jr, 520 kg/jr
- benzo[g,h,i]perylen: 33 kg/jr, 12 ton/jr, 61 kg/jr, 20 kg/jr, 553 kg/jr
- benzo[k]fluoranteen: 59 kg/jr, 21 ton/jr, 109 kg/jr, 35 kg/jr, 734 kg/jr
- chryseen: 56 kg/jr, 17 ton/jr, 105 kg/jr, 35 kg/jr, 426 kg/jr
- dibenzo[a,h]antraceen: 7 kg/jr, 3 ton/jr, 14 kg/jr, 5 kg/jr, 74 kg/jr
- fenanthreen: 1974 kg/jr, 645 ton/jr, 3553 kg/jr, 1085 kg/jr, 3176 kg/jr
- fluoranteen: 710 kg/jr, 262 ton/jr, 1307 kg/jr, 419 kg/jr, 3646 kg/jr
- fluoreen: 950 kg/jr, 265 ton/jr, 1738 kg/jr, 551 kg/jr, 953 kg/jr
- indeno[1,2,3-cd]pyreene: 32 kg/jr, 11 ton/jr, 58 kg/jr, 18 kg/jr, 263 kg/jr
- naftaleen: 1786 kg/jr, 567 ton/jr, 3448 kg/jr, 1215 kg/jr, 931 kg/jr
- pyreene: 382 kg/jr, 121 ton/jr, 692 kg/jr, 215 kg/jr, 1304 kg/jr

PCB

- PCB-101: 0,6 kg/jr, 0,1 ton/jr, 1,3 kg/jr, 0,5 kg/jr, 4,8 kg/jr
- PCB-118: 0,5 kg/jr, 0,01 ton/jr, 1,4 kg/jr, 0,7 kg/jr, 6,5 kg/jr
- PCB-138: 0,5 kg/jr, 0,1 ton/jr, 1,1 kg/jr, 0,5 kg/jr, 6,3 kg/jr
- PCB-153: 0,7 kg/jr, 0,1 ton/jr, 1,4 kg/jr, 0,6 kg/jr, 9,0 kg/jr
- PCB-20: 1,3 kg/jr, 0,4 ton/jr, 2,3 kg/jr, 0,7 kg/jr, 14,2 kg/jr
- PCB-28: 1,0 kg/jr, 0,2 ton/jr, 1,7 kg/jr, 0,5 kg/jr, 11,9 kg/jr
- PCB-52: 1,5 kg/jr, 0,3 ton/jr, 3,2 kg/jr, 1,3 kg/jr, 15,0 kg/jr
- PCB-8: 0,4 kg/jr, 0,1 ton/jr, 0,7 kg/jr, 0,2 kg/jr, 2,5 kg/jr

¹) Met het IJssmeer wordt bedoeld de Rijkswateren in het IJssmeergebied.
²) De schatting van de depositie op de Noordzee is onzeker (zie tekst).

PAK en PCB’s

Hoge waarden voor de depositie naar het Nederlandse oppervlaktewater werden gevonden voor fenanthreen, naftaleen, fluoreen, fluoranteen en acenaïfen met 0,5 tot 4 ton in het jaar 2000.

De depositie van de meeste PAK is in 2001 afgenomen ten opzichte van het jaar 2000, met gemiddeld 40 procent. Alleen de depositie van dibenzo[a,h]-antraceen nam iets toe. De depositie van PCB-52 naar het Nederlandse oppervlaktewater was relatief hoog in 2000, met ruim 4 kg per jaar. De depositie van de andere PCB varieerde tussen 0,5 en 2,5 kg per jaar. De depositie van PCB’s is in het jaar 2001 met 30 procent afgenomen ten opzichte van het jaar 2000.

Pesticiden

Hoge waarden voor de depositie naar het Nederlandse oppervlaktewater werden in het jaar 2000 gevonden voor DNOC (2,4 ton per jaar voor Nederland), dichlofenil (0,7 ton) en chlorprofm (0,6 ton per jaar), propachloor (0,3 ton per jaar) en triallaat (0,2 ton per jaar). Verder werd een
hoge depositie gevonden voor chloorthalonil, (bijna 0,1 ton per jaar) en vinclozolin (0,08 ton per jaar).
Voor een aantal pesticiden is de Nederlands gemiddelde depositie in 2001 sterk gedaald ten opzichte van 2000: de depositie van metolachlor is in 2001 éénvijfde van het niveau in 2000, de depositie van triallaat en dimethoat is in 2001 bijna éénderde van het niveau in 2000, chloornprofam, DNOC, lindaaan en procymidon zijn bijna gehalveerd in depositie, propachlor en dichlofenil zijn een kwart tot een derde gedaald in depositie. De depositie van 2,4-D, bentazon, fluazinam, methiocarb, en mevinfos, is gestegen met een factor 2 tot 4 in 2001.
Uit deze analyse blijkt dat deposities en concentraties van pesticiden van jaar tot jaar wel een factor twee kunnen verschillen. Deze verschillen hangen waarschijnlijk samen met verschillen in het gebruik van jaar tot jaar. Zo werd in plaats van metolachlor werd in 2001 vaak S-metolachlor gebruikt. Het verschil tussen de concentratie van de meeste PAK in de twee meetjaren is veel kleiner.
Voor carbendazim en glyphosae werd de depositie alleen geschat aan de hand van modelberekeningen. De onzekerheid in deze schattingen is daardoor groot.

Regionale verschillen
Er is een sterk verloop van de depositie over het land. Dit hangt samen met het gebruik van de deze stoffen in de verschillende regio’s. Het verschil in depositie tussen de verschillende regio’s kan daardoor wel tot een factor tien oplopen. Opvallende patronen werden aangetroffen voor stoffen als fluazinam, dimethoat en chloorthalonil, gebruikt in de teelt van aardappelen, en stoffen zoals procyimdon, tolcofos-methyl, vinclozolin en chloornprofam, gebruikt in de bollen- en in aardappelopslag. Niet voor alle stoffen was de relatie met teelt goed te leggen. De verdeling van de depositie van atrazine en trifuralin over het land geeft aan dat deze stoffen waarschijnlijk vanuit het buitenland naar Nederland worden getransporteerd. Ook het waarne- nomen patroon van de depositie van terbutylazin suggereert een aanzienlijke bijdrage uit het buitenland.

Reëmissie
Onderzocht werd in hoeverre droge depositie wordt beïnvloed door de aanwezigheid van stoffen in het milieukompartiment waarop de depositie plaatsvindt. Dit kan gebeuren wanneer een slecht oplosbare stof in hoge concentraties in water aanwezig is. De aanwezigheid van de stof kan worden veroorzaakt door lozingen, drift of andere processen zoals natte depositie. Bij hoge concentraties van de stof in het water en lage concentraties in de lucht zal de droge depositie van de stof worden geremd. In het uiterste geval de richting van de flux zelfs volledig omkeren. Er vindt dan geen droge depositie plaats maar emissie vanuit het water naar de lucht. Om een indruk te krijgen van het belang van dit proces werden in december van het jaar 2000 monsters oppervlaktewater (IJsselmeer, Oosterschelde en Noordzee) ge- genomen en geanalyseerd op het standaard analysepakket. Deze meetgegevens en modelberekeningen met een eenvoudig depositiemodel wijzen er op dat voor een aantal stoffen de droge depositie geremd wordt, dan wel in het geheel niet plaatsvindt. Hoewel de hoeveelheid meetgegevens slechts beperkt was zijn er toch concrete aanwijzingen dat atrazine, hexachloorbenzeen en triallaat eerder vanuit het oppervlaktewater te verdampen dan door droge depositie in het oppervlaktewater worden opgenomen. De depositie van dichlofenil en mecoprop worden geremd door de stoffen aanwezig in het oppervlaktewater. Voor deze stoffen is de droge depositieflux mogelijk een overschatting. Een goed inzicht in het werkelijke belang van dit reëmissie-proces vereist meer uitgebreid onderzoek.
S.5 Discussie

S.5.1 Vergelijking met eerdere studies
De gemeten belasting door atmosferische depositie met pesticiden is, met ongeveer 0,1% van de hoeveelheid gebruikte werkzame stof, ongeveer een factor tien hoger dan de in de MJP-G gegeven schatting. De MJP-G schatting is echter gemaakt voor alle in Nederland gebruikte pesticiden en daardoor mogelijk niet representatief voor de hier besproken groep. In de schattingen uit de rapportages van de Hoofdinspectie Milieuhygiëne is ook voor enkele stoffen een schatting gemaakt van de belasting van het oppervlaktewater door atmosferische depositie. De atmosferische depositie van de verschillende PAK lijkt in deze rapportages te worden overschat met een factor drie tot vier.

S.5.2 Trends
De uit de metingen afgeleide depositie is doorgaans lager dan de voor het jaar 1990 met verspreidingsmodellen berekende atmosferische depositie op Nederland. Voor PAK en PCB’s is de huidige depositie respectievelijk een factor vier en een factor twee lager dan voor het jaar 1990 werd geschat. De deposities van *endosulfan*, *lindaaan* en *trifluralin* verschillen echter een factor 10 tot 50. Opvallend zijn verder lage waarden voor de depositie van *parathion-ethyl*, *mevinfos*, *pentachloorfeno1*, *simazine*, *bentazon* en *atrazin*. De verschillen worden waarschijnlijk veroorzaakt worden door een sterke daling van het gebruik van deze stoffen in de afgelopen vijf jaar. Juist de stoffen die toen in de belangstelling stonden zijn inmiddels vervangen door andere stoffen. Afgezien van deze trend worden nog regelmatig niet toegelaten stoffen aangetroffen. Het betreft hier stoffen zoals *atrazin*, *endosulfan*, *propachloor*, *trifluralin* en *mevinvos*. Deze stoffen werden alle in 2001 in neerslag aangetroffen. Voor *atrazine*, dat vanaf het jaar 2000 niet is toegelaten in Nederland, *trifluralin* en *lindaaan* lijken ook bronnen in het buitenland een belangrijke bijdrage te leveren.

S.5.3 Atmosferische depositie vergeleken met andere bronnen
Het oppervlaktewater wordt behalve vanuit de atmosfeer via verschillende bronnen belast met stoffen. De belasting door atmosferische depositie is vergeleken met de belasting langs andere routes. Er zijn echter weinig gegevens. Voor de PAK en enkele andere stoffen kon op basis van de Milieumonitor (van de Hoofdinspectie Milieuhygiëne) een vergelijking worden gemaakt met de belasting via andere bronnen. Voor alle stoffen is de gemeten belasting door atmosferische depositie van dezelfde orde van grootte als de directe belasting en de belasting via effluventen. Voor *HCB*, *PCB’s* en *pentachloorfeno1* is de atmosferische route veruit de belangrijkste. In het kader van de MJP-G evaluatie zijn schattingen gemaakt van de belasting van de verschillende milieucompartimenten met gewasbeschermingsmiddelen door onder andere drift en laterale uitspoeling. Deze schatting kan voor een beperkt aantal stoffen worden vergeleken met de uit de metingen afgeleide directe atmosferische depositie op het oppervlaktewater in Nederland. De bijdrage van atmosferische depositie aan de belasting van het oppervlaktewater ligt voor de deze groep stoffen tussen de 10 en 140% van de belasting door drif. Opvallend is dat voor *fluazinam* de belasting door atmosferische depositie veel groter is. Gemiddeld over alle onderzochte stoffen komt bijna 0,1% van de gebruikte hoeveelheid actieve stof via directe atmosferische depositie in het Nederlandse oppervlaktewater terecht. Uit het MJP-G onderzoek blijkt verder dat de belasting met pesticiden via drift en laterale uitspoeling gemiddeld 0,22% van de gebruikte hoeveelheid werkzame stof bedraagt. De belasting
door atmosferische depositie is zeker van dezelfde orde van grootte, zeker als rekening wordt gehouden met de indirecte belasting. Voor enkele stoffen zoals propachlor en vinclozolin is depositie naar water, met ongeveer één procent, van de gebruikte hoeveelheid werkzame stof zelfs hoog te noemen. Een belangrijk onderscheid is wel dat de belasting via drift op een klein gedeelte van het oppervlaktewater terechtkomt terwijl de atmosferische depositie terechtkomt op het totale Nederlands oppervlaktewater. Drift zal dus in een beperkt aantal kleine wateren leiden tot hoge concentraties terwijl atmosferische depositie in alle wateren leidt tot lagere concentraties van pesticiden.

Een gedeelte van de depositie op bodem zal ook via uitspoeling of afspoeling in het oppervlaktewater terecht kunnen komen. Schattingen van de bijdrage van deze indirecte depositie via uit- en afspoeling van bodem zijn echter relatief onzeker. In de hier gepresenteerde schattingen is de bijdrage van deze indirecte belasting niet meegenomen. De bijdrage van de indirecte depositie is volgens een eerste schatting (voor het beheersgebied van ZHEW) van dezelfde orde van grootte als de directe atmosferische depositie.

5.5.4 Modelberekeningen

De overeenkomst tussen de gemeten en berekende natte depositie verschilde sterk tussen de verschillende pesticiden. Voor bentazon, dimethoat, tolclofosmethyl, DNOC en pirimifos-methyl is de kwaliteit van de vergelijking slecht. Voor de eerste drie stoffen is de oorzaak hier waarschijnlijk de kwaliteit van de meetresultaten waarbij slechts weinig concentraties boven de detectiegrens werden aangetroffen. Voor pirimifos-methyl en DNOC is de oorzaak minder duidelijk. Voor chloormefam, chloorthalonil, ethofumesaat, dichlorvos, procymidon, propachlor, terbutylazine en vinclozolin was de overeenkomst goed te noemen. Het verschil tussen de berekende en de gemeten depositie was voor deze stoffen gemiddeld minder dan een factor twee. Dit suggereert dat de schattingen die gemaakt zijn van de grootte van de emissie en de verdeling over het land en de berekeningen van de verspreiding door de atmosfeer redelijk goed zijn. Grote verschillen tot een factor tien werden gevonden voor, fluazinam, dichlobenil, dimethoat en triallaat. Opvallend zijn de resultaten van de vergelijking tussen de berekende en gemeten depositie van fluazinam. De berekende niveaus van deze stof zijn een factor tien hoger dan de gemeten niveaus, terwijl de correlatie tussen de concentraties op de verschillende locaties redelijk is. Uitgebreid onderzoek naar een verklaring voor de gevonden verschillen werd niet verricht.

Op basis van de gevonden verschillen die werden gevonden voor atrazine, dichlobenil, DNOC en triallaat werd geconcludeerd dat de geschatte emissies voor deze stoffen geen goed beeld geven van de werkelijkheid of dat de gebruikte parameters voor omzetting of depositie onjuist zijn.

De berekende depositie van fluoranteen (een gasvormige PAK) en voor benzo[a]pyreen verschilde ook aanzienlijk van de gemeten depositie. Het model onderschat de gemeten depositie van benzo[a]pyreen met een factor drie. De natte depositie van fluoranteen wordt door het model met een factor twee overschat.
S.5.5 Bijdrage van de verschillende brongebieden in Nederland en het buitenland

De mogelijkheden om met het model de bijdrage van verschillende Nederlandse brongebieden aan de depositie te schatten zijn geïllustreerd aan de hand van enkele voorbeelden. Van *benzo[a]pyreenc, procymidone, fluazinam, dichlofumar en chloorthalonil* is de depositie als gevolg van emissies in de verschillende provincies voor alle waterkwaliteitsgebieden berekend. De bijdrage van de verschillende brongebieden hangt sterk samen met de ligging ten opzichte het betrokken waterkwaliteitsgebied. Zo wordt de depositie van een groot aantal pesticiden in het beheersgebied van Zuiveringsschap Hollandse Eilanden en Waarden voor 25 tot 30% bepaald door emissies in het gebied. Voor PAK is deze bijdrage circa 90%.

Aan de hand van modelberekeningen kan ook worden onderzocht wat de bijdrage van het buitenland is aan de depositie. Goede schattingen van de emissie in het buitenland ontbreken echter. In het kader van de huidige studie zijn schattingen gemaakt op basis van het gebruik in Nederland in de verschillende teelten en informatie over het landgebruik in het buitenland. Interessant is het resultaat voor *atrazin*. Bij de berekeningen werd er van uitgegaan dat de stof niet in Nederland wordt gebruikt. De goede overeenkomst tussen de berekende en gemeten concentratie van *atrazin* is opnieuw een sterke aanwijzing dat de depositie van deze, in Nederland niet toegelaten, stof veroorzaakt wordt door emissies in het buitenland. Ook voor *trifluralin* en mogelijk *lindaan* geldt, dat het buitenland waarschijnlijk een belangrijke bijdrage levert aan de depositie.

S.6 Conclusies

Het bovenstaande verslag richt zich vooral op de wetenschappelijke conclusies die uit het onderzoek kunnen worden getrokken. Hierna worden de conclusies die uit het onderzoek kunnen worden getrokken nog eens samengevat, gericht op beleidsontwikkeling. Daarnaast wordt ingegaan op de mogelijkheden de ontwikkelingen in de depositsie de komende jaren te monitoren.

Op basis van het hier beschreven meetprogramma kunnen de volgende conclusies worden getrokken:

- Samenhangend met het gebruik in bepaalde perioden en gebieden vertoont de depositie van pesticiden een sterk verloop door het jaar en door het land. De jaarlijkse depositie kan daarnaast, door verschillen in gebruik, ook van jaar tot jaar verschillen tot een factor twee vertonen.

- Niet langer toegelaten stoffen worden in het jaar 2001 nog steeds in neerslag en lucht in Nederland aangetroffen. De bronnen hiervan moeten deels in Nederland worden gezocht. Voor stoffen als *atrazin* en *trifluralin* lijken bronnen in het buitenland een belangrijke bijdrage te leveren aan de belasting. Dit geldt waarschijnlijk ook voor enkele reeds lang verboden, persistentie stoffen zoals *endrin* en *o,p-DDE* (een omzettig product van DDT). Voor de meeste andere stoffen is de buitenlandse bijdrage minder belangrijk.

- Atmosferische depositie vormt voor sommige pesticiden en PAK een belangrijke belasting voor het binnenlands oppervlaktewater:
1. De gemeten belasting van het oppervlaktewater (uitgedrukt als jaarvracht) in Nederland door atmosferische depositie met pesticiden is van dezelfde orde van grootte als die door drift of die door laterale uitspoeling.
2. De gemeten belasting door atmosferische depositie van PAK (jaarvracht) is vrijwel even groot als de andere vormen van belasting.
3. Voor HCB, PCB’s en \textit{pentachloorenol} is de atmosferische route veel belangrijker dan andere routes.
 - Berekeningen voor enkele stoffen met een eenvoudig model van het oppervlaktewater laten zien, dat de jaargemiddelde belasting door atmosferische depositie alleen waarschijnlijk niet leidt tot overschrijding van het MTR in het oppervlaktewater. Atmosferische depositie kan wel bijdragen aan de belasting door andere bronnen waardoor overschrijding eerder op kan treden. Voor sommige pesticiden kan de hoge belasting door atmosferische depositie in bepaalde perioden van het jaar en in specifieke regio waarschijnlijk wel leiden tot overschrijding van het MTR in die periode.
 - De modelberekeningen geven voor enkele stoffen aan dat het VR (Verwaarloosbaar Risico) niveau in oppervlaktewater \textit{wel} door atmosferische depositie alleen kan worden overschreden.
 - Ook de belasting naar de bodem in Nederland (jaarvracht) is geschat. Door het ontbreken van kennis en betrouwbare gegevens zijn schattingen van de depositie naar bodem echter relatief onzeker. Vergelijking met de belasting door andere bronnen is vaak lastig door het ontbreken van goede gegevens. Voor natuurgebieden is de belasting vanuit de atmosfeer echter vaak de enige bron.
 - In het algemeen blijkt het OPS model goed bruikbaar om de depositie van pesticiden te berekenen. Het verschil tussen gemeten en berekende deposities was minder dan een factor twee, voor ruim de helft van de stoffen. Voor de rest van de stoffen werden grotere verschillen gevonden. Deze verschillen worden waarschijnlijk veroorzaakt door onjuistheden in de gebruikte schattingen van de emissie. De verschillen tussen de berekende en gemeten depositie van twee verschillende PAK bedroegen een factor twee tot drie.

Bovenstaande conclusies zijn afgeleid uit het huidige onderzoek. Ondanks de brede aanpak zijn er uiteraard enkele beperkingen die samenhangen met de gekozen opzet:
 - Er is gekozen voor een representatief middelenpakket. Een belangrijke groep pesticiden zoals de bis-dithio-carbamaten (\textit{maneb cs}) en enkele belangrijke stoffen zoals \textit{glyfosaat}, \textit{diuron} en \textit{carbendazim}, zijn echter niet, dan wel in beperkte mate, in het onderzoek betrokken.
 - De locatie van de meetstations was gericht op het verkrijgen van een landelijk beeld met specifieke aandacht voor verschillen tussen de regio’s. De meetlocaties zijn daarom zodanig gesitueerd dat beïnvloeding door locale bronnen minimaal is. In de directe omgeving van bronnen, bijvoorbeeld binnen een straal van een kilometer rond belangrijke bronnen zou de depositie aanzienlijk hoger kunnen zijn en gemakkelijk aanleiding kunnen geven tot overschrijding van MTR niveaus.
 - Naast de directe belasting is er ook de indirecte belasting. Dit is de depositie op het land die door afspoeeling in het oppervlaktewater terechtkomt. De bovenstaande conclusies zijn gebaseerd op de gemeten depositie exclusief deze indirecte depositie. De grootte van deze indirecte belasting is echter erg onzeker. Eerste schattingen laten zien dat deze route even groot zou kunnen zijn als de directe depositie, waardoor de totale atmosferische belasting nog eens tweemaal zo hoog kan worden.
 - Vergelijking met normconcentraties zoals het MTR is alleen mogelijk voor individuele stoffen. Het effect van de depositie door een combinatie van een groot aantal stoffen is niet onderzocht.
S.7 Aanbevelingen

S.7.1 Onderzoek

De hier gepresenteerde waarden voor de depositie zijn afgeleid uit metingen op acht tien stations verspreid over het land. Daardoor ontstaat een representatief beeld van de depositie op Nederland. Door het gebruik van metingen is de kwaliteit van de schatting van belasting relatief hoog in vergelijking tot de, in het verleden gemaakte, schattingen op basis van modelberekeningen. De onzekerheid in de berekende belasting van het oppervlaktewater werd geschat op een factor 5-10. In dit onderzoek is de depositie voor het eerst ook op basis van metingen vastgesteld. Uit een vergelijking tussen metingen en modelberekeningen blijkt dat het model in staat is de natte depositie vaak binnen een factor twee te schatten. De conclusie lijkt daarmee gerechtvaardigd dat de depositie met de huidige methoden goed kan worden vastgesteld. Daarbij is belangrijk dat de huidige schattingen van emissies van pesticiden volgens een nieuwe, gedetailleerde berekeningswijze zijn gegenereerd. Verbetering van de kwaliteit kan, voor wat betreft de kwaliteit van de metingen, nog worden bereikt door:
1) Verbetering van de gevoeligheid van de chemische analyse
 Een verbetering van de nauwkeurigheid kan voor een aantal stoffen nog wel worden bereikt door verhoging van de gevoeligheid van de chemische analyse voor enkele stoffen. Voor de meeste stoffen is de nauwkeurigheid echter voldoende. Voor de polaire pesticiden is de gevoeligheid in het algemeen te laag.
2) Vergroting van de kennis over de droge depositie
 Een onzekere grootheid is de waarde van de droge depositsnelheid naar bodem, vegetatie en oppervlaktewater. De droge depositie wordt nu afgeleid uit metingen van concentratie in lucht en een schatting van de depositsnelheid. De onzekerheid in deze depositsnelheid is vrij groot en er is behoefte aan validatie van de schattingen. De aandacht voor de belasting van terresstrische ecosystemen vanuit de atmosfeer is, behalve voor verzurende stoffen, zeer beperkt. Mede daardoor is er weinig onderzoek uitgevoerd naar de onderliggende processen en is de kennis zeer beperkt. Ook het proces van reemissie vereist meer kennis.
3) Vergroting van de kennis over de indirecte depositie
 In deze studie is het belang van de indirecte depositie (afspoeling enzovoort) niet meegenomen. De onzekerheid in de omvang van deze route is erg groot terwijl de bijdrage mogelijk groot is.
4) Verbetering van de schatting van de depositie op de Noordzee
 De schatting van de depositie op de Noordzee is nu geschat aan de hand van metingen dichtbij de Nederlands kust. Daardoor is geen rekening gehouden met het verloop van de concentratie van de kust naar meer open zee. Verbetering van deze schattingen is mogelijk door metingen ter plaatse uit te voeren. Daarnaast zou een uitgebreide modelstudie het inzicht kunnen vergroten.

De kwaliteit van de modelberekeningen van de depositie van pesticiden kan los daarvan verbeterd te worden door verbetering in:
1) Gegevens van de emissie van pesticiden in het buitenland. De hier gebruikte schattingen zijn voornamelijk gebaseerd op gegevens over de Nederlandse landbouw. Goede gegevens over het gebruik in het buitenland ontbraken.
2) De kwaliteit van fysisch chemische parameters zoals de Henry-constante en de dampspanning. Vooral voor laag vluchtige verbindingen is de onzekerheid over de dampspanning groot. De kennis over de omzettingssnelheid van stoffen in de atmosfeer is erg beperkt. Dit
leidt tot grote onzekerheden over de bijdrage van de belasting met stoffen vanuit bronnen in het buitenland.
3) Zoals hierboven al genoemd is er behoefte aan kennis over het proces van de droge depositie en de indirecte depositie.
In het hier gepresenteerde onderzoek zijn bijzonder veel gegevens verzameld. De analyse van de gegevens is zeer tijdrovend en heeft zich gericht op hoofdzaken. Er is zeker ruimte voor een meer gedetailleerde, wetenschappelijke analyse van de meetgegevens. Bij een uitgebreide analyse zouden uiteraard modelberekeningen een rol kunnen spelen. Startpunt van deze activiteit zou kunnen zijn een nadere analyse van de oorzaak van de verschillen tussen de gemeten en berekende deposities zoals die voor enkele stoffen wordt aangetroffen.

S.7.2 Informatievoorziening m.b.t. atmosferische depositie
Het huidige onderzoek geeft ook aanknopingspunten voor het beleid t.a.v. atmosferische depositie in de toekomst. Hieronder wordt een aantal aspecten nog eens besproken.

Monitoren van atmosferische depositie in de toekomst
De, in deze studie vastgestelde, omvang van atmosferische depositie als diffuse bron voor het oppervlaktewater lijkt zodanig groot dat verwacht mag worden dat er behoefte blijft bestaan aan gegevens over het belang van dit proces. Op basis van de vergelijking tussen de resultaten van modelberekeningen en metingen lijkt de conclusie bovendien gerechtvaardigd dat geschikte modellen beschikbaar zijn. Het blijkt daarnaast technisch goed mogelijk door middel van metingen de depositie op landelijke schaal te bepalen. De kosten van het meetprogramma zijn redelijk te overzien.

Voor het ontwikkelen van een strategie gericht op het monitoren van depositie in de komende jaren staan dus zowel metingen als modelberekeningen ter beschikking. Voor het ontwikkelen van een dergelijke strategie, zijn vooraf het concrete doel en de mogelijke kosten in relatie tot beschikbare budgetten van belang. Een combinatie van modelberekeningen en metingen ligt voor de hand. Een meetprogramma zou dan gericht kunnen zijn op het in kaart brengen van de verdeling van de depositie over het land en het volgen van ontwikkelingen in het pakket aan bestrijdingsmiddelen. Modelberekeningen zouden gebruikt kunnen worden om regionaal de depositie in relatie tot emissies en de ontwikkelingen daarin in kaart te kunnen brengen.
In een recent uitgevoerde onderzoek ten behoeve van het RIZA is door TNO een strategie uitgewerkt gericht op de informatiebehoeften van waterkwaliteitsbeheerders (Duyzer et al., 2002). Hierbij aansluitend kunnen drie sporen worden onderscheiden.
1) Modelberekeningen voor heel Nederland
Voorgesteld wordt berekeningen met een verspreidingsmodel in een formele traject uit te voeren op basis van gegevens over de emissie naar lucht. Deze gegevens kunnen worden verkregen op basis van de Emissierегистratie. Schattingen van de emissies van pesticiden zouden daarin kunnen worden opgenomen. Ook de uitkomsten van de berekeningen kunnen worden opgenomen in de Emissierегистratie. Het voordeel van deze formele aanpak is dat de kwaliteit van de gegevens vastligt en gehandhaafd blijft. Een resolutie van de gegevens op 5 bij 5 km schaal maakt het mogelijk voor elke waterkwaliteitsbeheerder gegevens te verzamelen.
2) Meting van de depositie op landelijke schaal
Dit spoor is vooraf belangrijk voor pesticiden. Doordat het middelpakket voortdurend veranderd zijn metingen noodzakelijk om ontwikkelingen vast te stellen en te volgen. Daarnaast kunnen metingen een belangrijke rol spelen om de effecten van beleid en in het gebruik in binnen- en buitenland te volgen. Ook zou (grootschalig) illegaal gebruik kunnen worden op-
gespoord. Voor het verkrijgen van een landelijk beeld zou de inspanning beperkt kunnen blijven tot enkele meetstations. De grote verschillen in de depositie over Nederland zouden waarschijnlijk goed in beeld gebracht kunnen worden door een verdeling van vijf stations volgens een dobbelsteen-configuratie. Daarmee zouden grote verschillen tussen Noord, Zuid, Oost en West in kaart kunnen worden gebracht. Het is wel belangrijk op deze stations een uitgebreid pakket stoffen met hoge gevoeligheid te monitoren en het pakket regelmatig aan te passen aan de ontwikkelingen. De belasting van specifieke regio’s zou gescant kunnen worden op basis van modellberekeningen uitgaande van gedetailleerde schattingen van de emissie. Aan de hand van modellberekeningen kan in ieder geval een redelijke schatting worden gemaakt.

3) Meting van de depositie op regionale schaal
Bij behoefte aan gegevens op regionale schaal kunnen enkelvoudige meetstations worden ingericht. Hierbij kan het middelenpakket specifiek worden vastgesteld. Aansluiting met de landelijke meetactiviteiten maakt vergelijking van resultaten mogelijk.

5.7.3 Atmosferische depositie in het toelatingsbeleid

De belasting van het Nederlands oppervlaktewater via atmosferische depositie blijkt van dezelfde orde van grootte te zijn als de belasting via drift en laterale uitspoeling. De bijdrage van de indirecte depositie kan de belasting nog aanzienlijk verhogen. Een belangrijk verschil is wel dat alle belasting door drift plaatsvindt op een relatief klein wateroppervlak terwijl de atmosferische depositie in heel Nederland plaatsvindt. Belasting door drift zal daardoor sneller leiden tot hoge concentraties en normoverschrijding. Atmosferische depositie zorgt voor een relatief lage belasting van grote gebieden. Het gemiddelde niveau zal daardoor niet snel leiden tot normoverschrijdingen in die gebieden. Tegelijkertijd laten de metingen echter zien dat in concentratiegebieden, in perioden waarin de stoffen gebruikt worden, de depositie wel een factor tien hoger kan zijn. Hoewel hiernaar in de huidige studie geen onderzoek is gedaan is het duidelijk dat nog dichter bij de bron, binnen enkele kilometers van bronnen of brongebieden, de concentratie en depositie nog veel hoger zou kunnen zijn. Atmosferische depositie lijkt dus een belangrijke diffuse bron voor het oppervlaktewater. Hoge belastingen in bepaalde perioden in brongebieden leiden waarschijnlijk tot overschrijding van MTR niveaus. Gezien deze situatie lijkt het zinvol te onderzoeken hoe atmosferische depositie bij het toelatingsbeleid kan worden betrokken.

De vraag is, in hoeverre de depositie van gewasbeschermingsmiddelen beperkt zou kunnen worden. Een uitvoerige bespreking van de mogelijkheden valt buiten het bestek van deze studie. Daarom wordt op deze plaats volstaan met enkele opmerkingen van algemene aard. In een recentelijk uitgevoerde studie van de CLM wordt hier meer uitgebreid op ingegaan. Een belangrijk gegeven is allereerst dat de depositie vrijwel recht evenredig is met de emissie naar lucht. Daarnaast laten de modellberekeningen zien dat de depositie in de verschillende waterkwaliteitsgebieden vaak gerelateerd kan worden aan emissies in de omgeving (binnen de provincie). Beperkingen in het gebruik en de emissie in Nederland leiden daardoor rechtstreeks tot vermindering van de depositie. Keuze voor stoffen met een kortere verblijftijd in lucht, bijvoorbeeld veroorzaakt door een hogere omzettingssnelheid, leidt ook tot vermindering van de depositie. Bij de toelating van pesticiden zou daarom rekening gehouden kunnen worden met de verblijftijd in lucht. Dit is echter een complexe materie waarbij veel basisgegevens ontbreken. In de directe omgeving van de bron, op een schaal van tientallen kilometers waar de depositie het hoogst is, zal bovendien het effect van een hoge omzettingssnelheid (ofwel een lage verblijftijd in lucht) relatief beperkt zijn. Het voordeel van stoffen met een hoge omzettingssnelheid komt vooral op grotere afstanden van de bron tot uitdrukking.
Voor een aantal, in Nederland niet langer toegelaten, stoffen spelen bronnen in het buitenland een belangrijke rol. Het in Nederland uitgevoerde beleid heeft geen invloed op de bijdrage van deze bronnen. Hier zou het internationaal toelatingsbeleid een rol moeten spelen.

Pilotstudie

Een pilotstudie naar de mogelijkheden om atmosferische depositie in het toelatingsbeleid op te nemen lijkt zinvol. Onderzocht zou kunnen worden in hoeverre fysisch chemische parameters in de praktijk het transport over middellange afstanden beïnvloeden en welke aspecten hier verder van belang zijn. Het onderzoek zou zich kunnen richten op de middenlange afstand van de min of meer directe omgeving van de bron tot honderden kilometers. Depositie in de directe omgeving van de bron is in de huidige studie niet nader onderzocht. De depositie is hier waarschijnlijk veel hoger dan op de huidige meetstations. De kans dat in de directe omgeving van bronnen, binnen enkele kilometers overschrijdingen van normconcentraties optreden en effecten optreden is veel groter dan op landelijke schaal. Het lijkt verder nuttig een aantal realistische situaties uitgebreid door te rekenen.

S.7.4 Andere stoffen

Het thans afgeronde onderzoek was vooral gericht op organische verbindingen met de nadruk op persistent verbindingen en pesticiden. Uit eerder uitgevoerd onderzoek kwam al naar voren dat ook voor andere stoffen de belasting uit de atmosfeer belangrijk kan zijn. Er zijn bovendien recente aanwijzingen dat de atmosferische depositie van metalen, zoals zink, hoger is dan eerder werd verondersteld. Recentelijk werd ook aangetoond dat neerslag oestrogene potentie kan hebben. Deze potentie bleek gerelateerd te kunnen worden aan de aanwezigheid van organochloorkool bestrijdingsmiddelen. De betekenis van deze onderzoekresultaten is nog onderwerp van nadere studie.

In recentelijk gerapporteerde onderzoek wordt gesuggereerd dat de belasting van estuaria en kustwater met nutriënten vanuit de atmosfeer een belangrijk effect kan hebben. Er wordt een invloed gesuggereerd op bekende effecten zoals algenbloei en zelfs uiteindelijk een verlies aan biodiversiteit. In hoeverre de resultaten van dit Noordamerikaans onderzoek ook in Noord-Europa van belang zijn is vooralsnog onduidelijk. Het lijkt zinvol in de nabije toekomst een inventariserende studie uit te voeren naar het belang van de depositie van metalen, oestrogeen actieve verbindingen en nutriënten voor de kwaliteit van het oppervlaktewater.
De STOWA in het kort

De Stichting Toegepast Onderzoek Waterbeheer, kortweg STOWA, is het onderzoeksplatform van Nederlandse waterbeheerders. Deelnemers zijn alle beheerders van grondwater en oppervlaktewater in landelijk en stedelijk gebied, beheerders van installaties voor de zuivering van huishoudelijk afvalwater en beheerders van waterkeringen. In 2002 waren dat alle waterschappen, hoogheemraadschappen en zuiveringsschappen, de provincies en het Rijk (i.c. het Rijksinstituut voor Zoetwaterbeheer en de Dienst Weg- en Waterbouw).

De waterbeheerders gebruiken de STOWA voor het realiseren van toegepast technisch, natuurwetenschappelijk, bestuurlijk juridisch en sociaal-wetenschappelijk onderzoek dat voor hen van gemeenschappelijk belang is. Onderzoeksprogramma’s komen tot stand op basis van behoefteinventarisaties bij de deelnemers. Onderzoekssuggesties van derden, zoals kennisinstituten en adviesbureaus, zijn van harte welkom. Deze suggesties toetst de STOWA aan de behoeften van de deelnemers.

De STOWA verricht zelf geen onderzoek, maar laat dit uitvoeren door gespecialiseerde instanties. De onderzoeken worden begeleid door begeleidingscommissies. Deze zijn samenGESTEld uit medewerkers van de deelnemers, zonodig aangevuld met andere deskundigen.

Het geld voor onderzoek, ontwikkeling, informatie en diensten brengen de deelnemers samen bijeen. Momenteel bedraagt het jaarlijkse budget zo’n vijf miljoen euro.

U kunt de STOWA bereiken op telefoonnummer: +31 (0)30-2321199. Ons adres luidt: STOWA, Postbus 8090, 3503 RB Utrecht. Email: stowa@stowa.nl.

Website: www.stowa.nl
SUMMARY

Estimates have shown that atmospheric deposition may be an important source of pesticides for Dutch coastal and inland waters. However, the uncertainty in these estimates, made using atmospheric dispersion model, is large. A project was defined in 1999 with the aim to improve these estimates on the basis of measurements. To this purpose a monitoring network was operated for a period of two years (1999-2001) Air and precipitation samples were taken on a weekly and monthly basis at eighteen stations, located across the whole country. From these samples the concentrations of pesticides, PCB's and PAH's were determined. In order to obtain a national scale overview all stations were carefully selected outside areas with high emissions. The concentrations and deposition near and inside source regions are expected to be higher than those observed at the stations used in this study.

The interpretation of the measurements was supported by calculations made using an atmospheric dispersion model. Input to the model included detailed estimates of the emission of pesticides in the Netherlands based on sales, information on land use and emission factors. The emissions from other European countries were estimated using statistics on land use and Dutch emission factors. The later estimates are therefore rather uncertain.

The following observations were made:

Concentrations

Up to 50 different pesticides were observed in precipitation and air. Strong temporal and spatial variations and observed that could be explained from knowledge of land use and agricultural usage. The annual deposition may vary by a factor two because of annual differences in usage. Several compounds, whose use is not allowed in the Netherlands were also observed. Emissions from other countries appear to contribute considerably to concentrations of recently forbidden compounds such as atrazine and trifluralin, as may also be the case for older compounds such as endrin and o,p DDE (a conversion product of DDT)

In the absence of quality standards for precipitation or air the concentration of these compounds in precipitation were compared to standards for surface water and drinking water. The concentration of eighteen of these in precipitation exceeded the maximum permissible level for surface water. The concentration of twenty-two exceeded the standard for drinking water of 100 ng/l.

Deposition

The input from the atmosphere to Dutch inland waters appeared to be as large as the input of pesticides by other sources such as spray drift. The deposition to soils in the Netherlands was also calculated. These estimates are however more uncertain and there are no estimates of the input by other sources. For nature reserves the atmosphere is usually the only source.

Calculations with a simple box model indicated that the input from the atmosphere by itself will, in general, not lead to exceedances of the maximum permissible level in surface waters. However in some regions high emissions in certain periods of the year may lead to temporary exceedances. This is especially the more true close to sources. For some compounds the concentration in surface water caused by atmospheric deposition exceeded the negligible effect level.

Model calculations

Model calculations were carried out to identify the sources of these compounds. The results of model calculations of the wet deposition were compared with the observed levels. For some compounds the agreement was quite good and the observed and calculated depositions were within a factor of two. For other compounds the differences could be as large as a factor of ten. At this stage no good explanation is available for these large differences.
Estimates of the deposition of pesticides to different Dutch watersheds were made and the source areas were indicated. This enables people responsible for surface water quality to develop measures to reduce the input and improve water-quality. The occurrence of atrazine could be related to emissions outside the Netherlands.

Discussion

The study was set up to assess the magnitude of atmospheric deposition of pesticides. Although the chosen approach was rather broad there are some weaknesses and it should be noted that: An attempt was made to study a representative package of pesticides. Nevertheless important pesticides such as maneb were not studied.

Sites were selected outside source regions. In these areas the concentration and deposition are expected to be much higher.

The indirect load by atmospheric deposition (run off of deposited material from paved or unpaved soils) was not accounted for. This route could be as important as direct deposition.

Little is known of the combined effect of the deposition of several toxic compounds together.

Based on the results of this study a recommendation was made to monitor developments in pesticide concentrations and deposition in future. The goal of such an activity would be to improve models by further testing and to monitor concentrations in view of changes in pesticide usage. A further recommendation was to study the possibility of including atmospheric deposition in the registration process.
STOWA in brief

The Institute of Applied Water Research (in short, STOWA) is a research platform for Dutch water controllers. STOWA participants are ground and surface water managers in rural and urban areas, managers of domestic wastewater purification installations and dam inspectors. In 2002 that includes all the country’s water boards, polder and dike districts and water treatment plants, the provinces and the State.

These water controllers avail themselves of STOWA’s facilities for the realisation of all kinds of applied technological, scientific, administrative-legal and social-scientific research activities that may be of communal importance. Research programmes are developed on the basis of requirement reports generated by the institute’s participants. Research suggestions proposed by third parties such as centres of learning and consultancy bureaux, are more than welcome.

After having received such suggestions STOWA then consults its participants in order to verify the need for such proposed research.

STOWA does not conduct any research itself, instead it commissions specialised bodies to do the required research. All the studies are supervised by supervisory boards composed of staff from the various participating organisations and, where necessary, experts are brought in.

All the money required for research, development, information and other services is raised by the various participating parties. At the moment, this amounts to an annual budget of some five million euro.

For telephone contact STOWA’s number is: (31 (0)30-2321199.
The postal address is: STOWA, P.O. Box 8090, 3503 RB, Utrecht.

E-mail: stowa@stowa.nl.
Website: www.stowa.nl.
Inhoudsopgave

Ten geleide
Korte samenvatting
Uitgebreide samenvatting
STOWA in het kort
Summary
STOWA in brief

1. Inleiding .. 3
 1.1 Het programma .. 3
 1.2 De processen .. 4
 1.3 Meetprogramma .. 4
 1.3.1 Meetlocaties .. 5
 1.3.2 Monsterneming .. 7
 1.3.3 Monstemethode .. 7
 1.3.4 Chemische analyse ... 8
 1.4 Modelberekeningen ... 8

2. Methoden ... 11
 2.1 Inleiding .. 11
 2.1.1 Bewerking van de gegevens ... 11
 2.1 Berekening van de atmosferische depositie uit de meetresultaten 12
 2.3 Berekening van de atmosferische depositie met behulp van een
 verspreidings-en depositiemodel .. 12
 2.3.1 Inleiding ... 12
 2.3.2 Emissies naar lucht ... 13
 2.3.3 Het transport- en depositiemodel .. 14

3. Resultaten ... 17
 3.1 Inleiding .. 17
 3.2 Concentraties in neerslag en lucht ... 17
 3.2.1 Kwaliteitsborging ... 17
 3.2.2 Verdeling over de fasen .. 18
 3.2.3 Concentratie verloop gedurende de meetperiode 19
 3.2.4 Gemiddelde concentraties in lucht ... 25
 3.2.5 Gemiddelde concentraties in neerslag ... 27
 3.3 De belasting van de bodem en het oppervlaktwater met atmosferische
 depositie .. 33
 3.4 Berekening van de atmosferische depositie met behulp van een verspreidingsmodel ... 37
 3.4.1 Vergelijking van modelresultaten met gemeten natte depositie in Nederland 37
 3.4.2 Bijdragen van emissies van de verschillende provincies op depositsies in
 waterschappen ... 48
 3.4.3 Het effect van atmosferische depositie van pesticiden op de concentraties
 in oppervlaktwater; vergelijking met normwaarden 51
4. **Discussie en conclusies** ... 55
4.1 Inleiding .. 55
4.2 De resultaten van de metingen .. 55
4.3 Vergelijking met modelberekeningen .. 58
4.4 Aanbevelingen voor het vervolg .. 59
4.4.1 Aanbevelingen voor het verder onderzoek 59
4.4.2 *Monitoren van atmosferische depositie van organische verbindingen in de toekomst* ... 60
4.4.3 Atmosferische depositie in het toelatingsbeleid 62
5. **Referenties** .. 65
6. **Verantwoording** ... 69

Bijlagen

I Depositiesnelheid
II Concentraties in neerslag en in lucht
III De nauwkeurigheid van de geschatte atmosferische belasting
IV Ge bruikte verwerkingsmethoden
V Atmosferische depositie in de omgeving van de bron
VI Concentraties en deposities in Noord-Holland
VII Bijdrage van de verschillende provincies en het buitenland aan de deposities op de meetlocaties
VIII De concentratie van enkele polaire pesticiden in neerslag
IX De atmosferische depositie van pesticiden vergeleken met het gebruik van de werkzame stof in Nederland
1. Inleiding

Stoffen komen langs verschillende routes in het oppervlaktewater terecht. Directe lozingen, afspoeling en drift zijn daarbij belangrijk. Ook vanuit de atmosfeer kunnen stoffen naar het aardoppervlak worden getransporteerd, gebonden aan neerslag en door directe opname uit de lucht. Recentelijk uitgevoerde modelberekeningen laten zien dat voor veel oppervlaktewateren de belasting via de atmosfeer een belangrijk aandeel vormt van de totale belasting met persistent organisch verbindingen (Baart et al., 1995 en Warmenhoven et al., 1989a). Dit geldt vooral voor de pesticiden. Zo vormt de atmosfeer voor de Noordzee de belangrijkste bron van veel pesticiden. De bijdrage van de onderzoekte stoffen lag veelal boven de 90% (Baart et al., 1995). Ook voor het zoete oppervlaktewater levert de atmosfeer vaak een belangrijke bijdrage aan de belasting (Warmenhoven et al., 1989b). De onzekerheid in de gemaakte schattingen is echter groot (Baart et al., 1995). Dit hangt, onder andere, samen met het gebrek aan goede gegevens over de emissie van de verschillende stoffen. Bovendien ontbreken metingen die het mogelijk maken de gemaakte schattingen te valideren. In 1998 verscheen een rapport en een advies van de Gezondheidsraad waarin het belang van de atmosferische route voor pesticiden werd aangegeven (Van Dijk et al., 1998).

1.1 Het programma

De Interdepartementale Werkgroep Atmosferische Depositie (IWAD) is al enige jaren bezig met het initiëren van onderzoek gericht op het verkleinen van de onzekerheid in schattingen van de depositie van persistent verbindingen. Na een eerste studie, waarin modelberekeningen werden uitgevoerd (Warmenhoven 1989a, 1989b) werd een lijn uitgezet gericht op het verkleinen van de onzekerheid door middel van metingen. Vervolgens werd een eerste strategie voor een meetprogramma ontwikkeld. Daarna werden in een pilotstudy meetmethoden ontwikkeld, getoetst en op beperkte schaal ingezet (Baas en Duyzer, 1997). Deze studie gaf aan dat het goed mogelijk is metingen van de depositie uit te voeren. Uiteindelijk werd een enquête uitgevoerd onder alle bij de problematiek van de atmosferische depositie betrokken instanties, zoals waterkwaliteitsbeheerders, Rijkswaterstaat en Ministeries (Duyzer et al. 1998). In de enquête werd de behoefte aan informatie bij de betrokkenen geïnventariseerd. Op basis van de resultaten van die enquête werd een uitgebreid programma opgesteld. In het voorjaar van 1999 werd gestart met het programma. Het doel van het onderzoek was als volgt geformuleerd:

Het bepalen van de belasting van de kustwateren en de Noordzee (met nadruk op het Nederlands Continentaal Platt) en het Nederlands grondgebied (water en bodem) met persistent organische verbindingen (POP). Vanuit de atmosfeer en het aangeven van de bronnen van deze belasting. ALS resultaat van dit onderzoek wordt zowel op nationale als op regionale schaal overzicht van het belang van atmosferische depositie verkregen. In de toekomst zal een strategie moeten worden ontwikkeld, gericht op het monitoren van ontwikkelingen in de depositie.

1.2 De processen

De hier bestudeerde stoffen komen op verschillende manier in de lucht terecht. PAK komen vrij bij verbrandingsprocessen, PCB’s verdampen uit, in het verleden gebruikte, transformatoren en condensatoren en pesticiden verdampen tijdens en na de toepassing. In de lucht gekomen worden ze getransporteerd door de wind en daarbij verdunnen. Tijdens het transport door de lucht staan ze aan allerlei processen bloot. De belangrijkste zijn opname aan in lucht zwevende deeltjes, omzetting door ozon of radicalen, fotolyse, en depositie. Veel van de hier bestudeerde stoffen hebben een lage damp spanning en zullen snel aan in de lucht zwevend stof worden opgenomen. Depositie is het proces waarbij stoffen worden opgenomen op het aardoppervlak. Daarbij is natte depositie het proces waarbij stoffen worden opgenomen in neerslag. Droge depositie is het proces waarbij stoffen door turbulentie in contact komen met het aardoppervlak en daar worden opgenomen. Zo kunnen goed oplosbare stoffen gewoon in oppervlaktewater op worden genomen. Het meten van natte depositie is relatief eenvoudig. De concentratie van een stof in neerslag wordt bepaald. De natte depositie is dan de gemiddelde concentratie vermenigvuldigd met de hoeveelheid neerslag. Het meten van droge depositie is erg lastig. In dit onderzoek wordt volstaan met een meting van de concentratie in lucht. Uit deze concentratie wordt met behulp van de zogenaamde droge depositiesnelheid de depositieflux berekend. Deze depositiesnelheid is afhankelijk van de stofeigenschappen en van de eigenschappen van het oppervlak waarop de depositie plaatsvindt.

1.3 Meetprogramma

Gedurende een periode van ruim twee jaar zijn monsters van neerslag en lucht genomen op achttien locaties. De locaties waarop de monsters zijn genomen zijn zodanig over Nederland verdeeld, dat een redelijke ruimtelijke dekking over Nederland wordt bereikt. Bovendien zijn locaties in gebieden met specifieke agrarische activiteiten en daaraan gerelateerde bestrijdingsmiddelen geselecteerd. Door deze werkwijze wordt zowel een goed ruimtelijk overzicht verkregen, als inzicht in de situatie in de verschillende regio’s, met verschillende agrarische activiteiten. De locaties van de meetstations werden zorgvuldig geselecteerd waarbij specifiek aandacht werd besteed aan hun ligging ten opzichte van bronnen en de beïnvloeding door obstakels zoals gebouwen. De metingen op deze locaties geven een goed beeld van de atmosferische depositie in de betrokken gebieden en geven ook goed aan hoe deze over Nederland varieert.
1.3.1 Meetlocaties

Tabel 1 geeft de ligging van de verschillende locaties en de analyses die, op de daar genomen monsters, zijn uitgevoerd. De locatie Lelystad-Oostvaardersplassen is in de loop van het jaar 2000 ontmanteld in verband met vandalisme en een nieuwe locatie, Lelystad-Houtribsluizen, werd in plaats daarvan in gebruik genomen. De ligging van de meetlocaties is aangegeven in Figuur 1.

Figuur 1 De ligging van de meetstations in Nederland.
Tabel 3 Ligging van locaties waar metingen worden verricht. Aangegeven zijn de coördinaten en de beheerder. Verder is de voor het station gehanteerde twee letter code aangegeven en welke metingen worden uitgevoerd op de verschillende locaties.

<table>
<thead>
<tr>
<th>Volgnummer</th>
<th>Naam locatie</th>
<th>Code</th>
<th>Ligging</th>
<th>Type station</th>
<th>Coördinaten</th>
<th>Beheerder</th>
<th>Start meten</th>
<th>Extra metingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Andijk</td>
<td>(AN)</td>
<td>Noord-Holland (Oost)</td>
<td>R+</td>
<td>145.500-528.700</td>
<td>PWZN</td>
<td>16-9-1999</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Anna Paulowna</td>
<td>(AP)</td>
<td>Noord-Holland (Noord)</td>
<td>R+</td>
<td>120.250-544.500</td>
<td>Waterschap de Hollandse Kroon</td>
<td>4-11-1999</td>
<td>OT, AL</td>
</tr>
<tr>
<td>9</td>
<td>Betuwe</td>
<td>(BE)</td>
<td>Betuwe</td>
<td>R</td>
<td>147.650-440.150</td>
<td>HHR Rivierenland</td>
<td>15-8-1999</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Delft</td>
<td>(DE)</td>
<td>Randstad</td>
<td>R</td>
<td>086.100-446.100</td>
<td>TNO</td>
<td>15-9-1999</td>
<td>AL</td>
</tr>
<tr>
<td>12</td>
<td>Egmond</td>
<td>(EG)</td>
<td>Noord-Holland (kuststrook)</td>
<td>R+</td>
<td>108.600-517.300</td>
<td>Waterschap het Lange Rond</td>
<td>5-11-1999</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Fochtelooverveen</td>
<td>(FO)</td>
<td>Zuid Oost Friesland</td>
<td>R</td>
<td>220.250-558.300</td>
<td>Natuurmonumenten</td>
<td>15-9-1999</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ketelhoven</td>
<td>(KE)</td>
<td>Flevopolder</td>
<td>R</td>
<td>180.100-510.250</td>
<td>Flevoveraard</td>
<td>15-9-1999</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Lauwersmeer</td>
<td>(LA)</td>
<td>Waddenzee</td>
<td>K</td>
<td>211.460-600.200</td>
<td>Staatsbosbeheer</td>
<td>15-9-1999</td>
<td></td>
</tr>
<tr>
<td>14*</td>
<td>Lelystad</td>
<td>(LE)</td>
<td>Flevoland (Oostvaardersplassen)</td>
<td>R+</td>
<td>156.500-496.500</td>
<td>Staatsbosbeheer (regio Flevoland)</td>
<td>Ontmanteld</td>
<td>OT</td>
</tr>
<tr>
<td>14</td>
<td>Lelystad</td>
<td>(LE)</td>
<td>Houtribdijkzijen</td>
<td>R</td>
<td>Rijkswaterstaat</td>
<td>15-9-2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Meetpost Noordwijk</td>
<td>(NO)</td>
<td>Noordzee</td>
<td>K</td>
<td>RWS Dr. Noordzee</td>
<td>8-9-1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Speulderdijk</td>
<td>(SP)</td>
<td>Veluwe</td>
<td>K</td>
<td>177.700-476.000</td>
<td>RIVM</td>
<td>15-9-1999</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Stavoren</td>
<td>(ST)</td>
<td>Friesland</td>
<td>R+</td>
<td>153.500-533.500</td>
<td>Weterskip Fryslan</td>
<td>8-12-1999</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Veendam</td>
<td>(VE)</td>
<td>Oost Groningen</td>
<td>R</td>
<td>256.450-5691.50</td>
<td>Zuiveringsbeheer Provincie Groningen</td>
<td>17-9-1999</td>
<td>OT, AL</td>
</tr>
<tr>
<td>5</td>
<td>Wijnandsrade</td>
<td>(WY)</td>
<td>Zuid Limburg</td>
<td>R</td>
<td>189.800-323.700</td>
<td>RIVM</td>
<td>15-9-1999</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Yerseke</td>
<td>(YE)</td>
<td>Zeeland</td>
<td>R</td>
<td>061.320-390.650</td>
<td>Waterschap Zeeuwse Eilanden</td>
<td>15-9-1999</td>
<td>OT</td>
</tr>
<tr>
<td>6</td>
<td>De Zilk</td>
<td>(ZI)</td>
<td>Zuid Holland kust</td>
<td>R</td>
<td>95.350-479.050</td>
<td>RIVM</td>
<td>15-9-1999</td>
<td></td>
</tr>
</tbody>
</table>

R geeft aan een regio station waar elke vier weken een luchtmonster en een neerslagmonster wordt genomen. In beide monsters wordt de hoeveelheid pesticiden bepaald.

R+ geeft aan een regio station waar elke vier weken een luchtmonster en een neerslagmonster wordt genomen. In beide monsters wordt de hoeveelheid pesticiden, PAK en PCB’s bepaald.

K geeft aan een kernstation waar elke vier weken een neerslag monster wordt genomen waarin de hoeveelheid pesticiden, PCB’s en PAK wordt bepaald. Er wordt elke week een luchtmonster genomen waarin dezelfde stoffen worden bepaald.

***) ontmanteld

*1) AL = aanvullende lijst stoffen in neerslag en luchtmonsters in 2000

*OT = organootbindingen in neerslag

*PU = phenylureum verbindingen in neerslag

STOWA 6
1.3.2 Monsterneming

Op de meeste stations werden steeds, gedurende perioden van vier weken, een luchtmonster en een neerslagmonster genomen (R, Tabel 3). In beide monsters werd de hoeveelheid pesticiden bepaald. Op tien locaties werden naast de hoeveelheid pesticiden ook PCB’s en PAK bepaald (de zogenaamde regio plus stations, R+) Op drie kernstations (K) verspreid over het land werden wekelijks luchtmonsters verzameld en maandelijkse neerslagmonsters. Deze monsters werden geanalyseerd op pesticiden, PCB en PAK. Op kernstation Speulderfeld werden de fracties bepaald, waarin de stoffen in lucht in de deeltjesfase en in de gasfase voorkwamen.

1.3.3 Monstermethode

De luchtmonsters werden verzameld door met behulp van hoog volume pompen een bekende hoeveelheid lucht door een monsternemer te zuigen. Deze monsternemer bestaat uit een glasvezel deeltjesfilter, gevolgd door een polyurethaan-foam (PUF) in serie met een styreen/divenylbenzeen polymer adsorbent (XAD). Het deeltjesfilter en de absorbentia worden in het laboratorium geanalyseerd voor het bepalen van de concentraties van pesticiden, PCB en PAK in de deeltjesfase en gasfase. In Duyzer et al. (1999) wordt de methode uitgebreid behandeld. Neerslagmonsters werden verzameld met een wet-only sampler. Deze samplers staan alleen dan open wanneer het regent, waarbij de neerslag wordt opgevangen in een gekoelde (4°C) glazen 10 liter fles. Door allerlei oorzaken kan de hoeveelheid neerslag, die met behulp van een wet-only sampler wordt gevangen, afwijken van de hoeveelheid neerslag die wordt opgevangen met behulp van een standaard regenvanger. Daarom wordt de neerslaghoeveelheid, die nodig is voor de bepaling van de natte depositie, met een standaard regenvanger van het type Hellman bepaald, volgens NEN 6585.

Figuur 2 Neerslagvanger en apparatuur voor het nemen van luchtmonsters op de locatie Speulderfeld.
1.3.4 Chemische analyse

De lucht- en neerslagmonsters zijn geanalyseerd op een groot aantal verbindingen met behulp van gaschromatografie gekoppeld met massaspectrometrie (GC/MS). Voor de analyse van een aantal polaire pesticiden is gebruik gemaakt van de LC-MS methode. De verbindingen waarnam onderzoek werd gedaan werden geselecteerd aan de hand van verschillende criteria die uitgebreid zijn besproken in het onderzoeksvoorstel. De monsters zijn geanalyseerd op hun gehalte aan PCB’s, PAK en pesticiden. Daarin zijn de zeven indicator-PCB’s en de zestien PAK van EPA. Ook is onderzocht in hoeverre PAK in de gasfase dan wel gebonden aan deeltjes voorkomen. De concentratie van pesticiden werd in alle monsters bepaald, die van PAK en PCB’s in de monsters van negen stations. De keuze van de te analyseren pesticiden is lastiger. Er wordt in Nederland de rest van Europa een zeer grote groep van gewasbeschermingsmiddelen gebruikt. Alleen al in Nederland zijn driehonderd pesticiden toegelaten voor gebruik in de landbouw. Een grote groep wordt aangetroffen in oppervlaktewater en in neerslag. De volgende aspecten hebben bij de selectie een rol gespeeld:

- het voorkomen van stoffen in oppervlaktewater en in neerslag
- voorkeuren van opdrachtgevers
- een representatieve keuze, gelet op toepassing (herbiciden, insecticiden, enz.), teelt en toelatingsstatus (al dan niet toegelaten stoffen).

Het is gezien de kosten onmogelijk alle gebruikte stoffen volgens één monsternemingsmethode en analysemethode in lage concentraties te bepalen. Teneinde de kosten te beperken is een keuze gemaakt uit de voorkomende stoffen. Er is vervolgens een specifieke methode ontwikkeld waarmee een grote groep belangrijke stoffen kan worden bepaald. In Duyzer et al. (1999) en Duyzer en Vonk (2001) wordt nader ingegaan op de keuze van de te analyseren componenten. In Bijlage II is de complete lijst van geanalyseerde pesticiden, PCB’s en PAK weergegeven. Gedurende het eerste jaar zijn de monsters van vier locaties op een aanvullende groep stoffen onderzocht. Op basis van deze analyses is het middelenpakket in het tweede jaar aangepast. In het jaar 2000 werd nog een aantal monsters onderzocht op een aantal meer polaire verbindingen. De resultaten van deze analyses staan opgenomen in Bijlage VIII.

1.4 Modelberekeningen

Met een verspreidingsmodel wordt berekend hoe stoffen door de atmosfeer worden verspreid. Daarbij wordt rekening gehouden met de processen waardoor stoffen uit de atmosfeer worden verwijderd zoals droge depositie (opname aan het aardoppervlak zonder tussenkomst van neerslag), natte depositie (opname in neerslag gevolgd door opname aan het aardoppervlak) en afbraak.

Op basis van gegevens over de ruimtelijke verdeling van emissies van stoffen, hun fysisch-chemische eigenschappen en meteorologische omstandigheden kan met een model de depositie over een gebied berekend worden.

Het aantrekkelijke van modelberekeningen is, dat inzicht ontstaat in de relatie tussen emissies, (en veranderingen daarin), en de depositie. Bovendien kunnen voor elke plaats berekeningen worden gemaakt en kunnen deposities voor een specifieke regio (bijvoorbeeld waterstroomgebieden) worden afgeleid.

Deze eigenschappen maken modellen uitermate geschikt voor onderzoek naar de mogelijke effecten van beleidsmaatregelen op de depositie. De onzekerheid in het resultaat van modelberekeningen is echter vaak zo groot, dat geschiktheid voor het gebruik voor beleidsontwikkeling
aanvechtbaar is. In het hier beschreven onderzoek wordt, op basis van de vergelijking van de gemeten en berekende concentraties en deposits, een eerste uitspraak gedaan over de kwaliteit van modelberekeningen voor een groot aantal stoffen.

Een bijkomend voordeel van modelberekeningen is de mogelijkheid voor zogenaamde herkomstanalyse. Aangezien met de modellen een relatie gelegd kan worden tussen emissie op een bepaalde locatie en depositie elders, kan nagedaan worden, in hoeverre bepaalde bronnen verantwoordelijk zijn voor de depositie in een gebied.

In het hier beschreven onderzoek zijn berekeningen uitgevoerd op basis van gegevens over de emissie uit de Emissieregistratie (voor PAK) en een emissie-inventarisatie voor pesticiden uitgevoerd door ALterra, in het kader van de MJP-G evaluatie.
2. Methoden

2.1 Inleiding

In dit hoofdstuk wordt de manier waarop de meetresultaten worden verwerkt besproken. De verwerking van de meetresultaten is niet eenvoudig. In de afgelopen periode zijn op 18 locaties de concentraties van 16 PAK’s, 10 PCB’s en zo’n 70 pesticiden vastgesteld. Daarnaast worden nog aanvullende meetgegevens zoals de neerslaghoeveelheid, de luchttemperatuur en de monstervolumina apart verzameld. Dit levert bijna 5000 meetgegevens per maand op. Per jaar loopt dit op tot ruim 50000 meetgegevens. Alle gegevens zijn ondergebracht in een database waaruit op relatief eenvoudige wijze overzichten en doorsnedden kunnen worden opgesteld. Hieronder wordt ingegaan op mogelijkheden om de kwaliteit van de meetgegevens te bewaken en representatieve meetgegevens uit de gegevens af te leiden.

2.1.1 Bewerking van de gegevens

Het bepalen van representatieve grootheden uit de beschikbare meetgegevens is vaak niet eenvoudig. Dat komt omdat de concentratie van sommige stoffen niet vaak en slechts weinig boven de detectiegrens wordt aangetroffen. Bij het bepalen van de concentratie van stoffen in de genomen monsters is hier aandacht aan besteed. Bij elke serie monsters wordt een schatting van de detectiegrens voor elke individuele stof gemaakt. Alle positieve identificaties van een stof worden echter gerapporteerd. Slechts in die gevallen dat de stof niet kan worden geïdentificeerde wordt een waarde nul gegeven. In een gevoeligheidsanalyse is onderzocht wat het effect van deze werkwijze is. In bijlage III wordt uitvoeriger ingegaan op de gevolgde werkwijze. Het al dan niet voorkomen van stoffen beneden de detectiegrens geeft vooral problemen bij stoffen zoals pesticiden, die mogelijk gedurende perioden van het jaar in het geheel niet voorkomen.

De stof kan gedurende drie maanden MTR waarden overschrijden en de overige maanden niet worden aangetroffen. Het berekende jaargemiddelde komt daardoor erg laag uit en geeft dan niet een goed beeld van het voorkomen van de stof. Het is niet op voorhand duidelijk hoe in dit geval de gegevens het best kunnen worden gepresenteerd. Om deze problematiek te omzeilen wordt in deze rapportage naast gemiddelde waarden ook het aantal malen dat de stof wordt aangetroffen, en eventueel normen overschrijdt, gepresenteerd.

Berekening van gemiddelde grootheden

In het volgende hoofdstuk worden de gemiddelde concentraties in lucht en neerslag gegeven. De gemiddelde concentratie is berekend als het rekenkundig gemiddelde van alle monsters. Ook de monsters waarin de stof niet kon worden aangetoond zijn dus in de berekening meegenomen. Deze berekeningswijze is ook gehanteerd voor de gemiddelde concentratie in de neerslag monsters. Ook zijn gemiddelde concentraties van alleen die monsters, waarin een stof werd aangetroffen, berekend (Zie ook bijlage III).
2.2 Berekening van de atmosferische depositie uit de meetresultaten

Het belangrijkste doel van het onderzoek is het vaststellen van de belasting van Nederland met persistente organische verbindingen vanuit de atmosfeer. In dit hoofdstuk wordt aangegeven hoe uit de meetgegevens de depositie wordt afgeleid. Daarbij wordt onderscheid gemaakt tussen droge en natte depositie. Deze worden nu achtereenvolgens behandeld.

Natte depositie

Natte depositie wordt berekend uit de gemeten concentratie van stoffen in de neerslag \(C_{n,periode} \) en de hoeveelheid neerslag uit de vierwekelijkse periode \(V_{periode} \).

De jaargemiddelde natte depositie flux \(F_{nat,jaar} \) (g/ha/jaar) wordt dan berekend uit de gegevens van elke vierwekelijkse periode:

\[
F_{nat,jaar} = \sum_{periode=1}^{13} C_{n,periode} \cdot V_{periode}
\]

Droge depositie

Bij droge depositie worden stoffen (gassen of deeltjes) aan het aardoppervlak opgenomen zonder tussenkomst van neerslag. In de lucht voorkomende stoffen komen door turbulente luchtbewegingen in contact met aardoppervlak en worden daar opgenomen. Zo zullen goed oplosbare stoffen snel in oppervlaktewater oplossen. Directe metingen van de atmosferische depositie zijn in principe mogelijk, maar worden nauwelijks op continue basis toegepast. In dit onderzoek is gebruik gemaakt van een hybride methode, waarbij de depositie wordt geschat op basis van metingen van de luchtc Conoratatie en een schatting van de depositiesnelheid.

De droge depositieflux \(F_{droog,jaar} \) wordt berekend uit de gemeten jaargemiddelde concentratie van stoffen in lucht \(C_{lucht,jaar} \) en een schatting van de depositiesnelheid \(V_d \):

\[
F_{droog,jaar} = c_{lucht,jaar} \cdot V_d
\]

De droge depositiesnelheid van stoffen is sterk afhankelijk van meteorologische condities en de ondergrond waarop de depositie plaatsvindt. In deze studie is voor de verschillende stoffen de depositiesnelheid naar water en bodem berekend. De depositiesnelheid naar water is berekend volgens de methode van Liss and Slater (1974) en de depositiesnelheid naar bodem is berekend met behulp van het SimpleBox model (Van der Meent, 1993) Hierop wordt uitgebreider ingegaan in Bijlage I.

2.3 Berekening van de atmosferische depositie met behulp van een verspreidings- en deponiemodel

2.3.1 Inleiding

Voor het berekenen van verspreiding en depositie van stoffen door de lucht is allereerst inzicht nodig in de mate waarin verontreinigende stoffen naar de atmosfeer uitgestoten (geëmitteerd) worden door de verschillende bronnen. In Paragraaf 2.3.2 wordt de manier waarop deze informatie verkregen is nader toegelicht.

Nadat stoffen geëmitteerd zijn zullen de stoffen, afhankelijk van de meteorologische omstandigheden en hun fysisch-chemische eigenschappen, verspreiden via de atmosfeer en uiteindelijk...
deponeren op het aardoppervlak. Deze processen kunnen met behulp van een transport- en depositiemodel worden beschreven (zie paragraaf 2.3.3).

De totale belasting van het oppervlaktewater ten gevolge van atmosferische depositie vindt naast de directe weg (atmosferische depositie) ook via een indirecte weg plaats. Deze indirecte belasting zorgt voor een verhoging van de belasting van oppervlaktewater boven de directe atmosferische depositie. Hierbij gaat het om de routes die gevolgd worden nadat een verontreiniging gedeponerend op een ander oppervlak dan water, zoals afspoeling van de, al dan niet verharde, bodem, belasting via rioolstelsel (gezuiverd/ongezuiverd), enzovoort. In Bleeker en Duyzer (2002) wordt een methode gepresenteerd om naast de directe depositie de indirecte depositie af te leiden. In de hier beschreven studie is de indirecte depositie niet berekend.

2.3.2 Emissies naar lucht

Een belangrijke invloed voor een transport en depositiemodel is de emissie van een stof naar de lucht. De emissie van bestrijdingsmiddelen wordt, in het algemeen, afgeleid uit de hoeveelheid die in een bepaalde gebied wordt gebruikt en de zogenaamde emissiefactor. Deze emissiefactor, of wel de fractie van een stof die bij en na de toepassing verdamp, hangt sterk samen met de dampdruk van een stof. Daarnaast spelen allerlei factoren zoals de gewassoort, gebruikswijze enzovoort nog een rol. De onzekerheid in de emissiefactor is doorgaans groot. De hoeveelheid van middelen die in een bepaald gebied worden gebruikt is doorgaans ook onzeker. Daarbij speelt de vertrouwelijkheid van informatie bovendien een rol. Meestal kan echter op basis van verkoopsijfers een redelijke schatting van het totale gebruik in Nederland gemaakt worden. De verdeling naar bepaalde gebieden vindt plaats op basis van gegevens over teelt. De schattingen van de emissie van bestrijdingsmiddelen zijn dus relatief onzeker terwijl een consistente bron van informatie zoals de Emissie Registratie ontbreekt. Daardoor moest voor de stoffen in de huidige studie gebruik worden gemaakt van verschillende informatiebronnen. Deze worden hierna kort besproken.

De emissie van fluorantheen en benzo[a]pyre en werden ontleend aan de Emissieregistratie (Bleeker en Duyzer, 2002).

Emissies uit de landbouw

Emissies uit het buitenland

De emissie van fluorantheen en benzo[a]pyre en werden ontleend aan inventarisaties uitgevoerd door TNO (zie ook Bleeker en Duyzer, 2002). Informatie over de emissie van bestrijdingsmiddelen is niet op een uniforme manier voorhanden voor de landen waarvan verwacht wordt dat die een significante bijdrage leveren aan de belasting in Nederland. Hierbij gaat het in eerste instantie om de landen: België, Duitsland, Engeland, Frankrijk en Spanje. Om echter toch een, zij het vrij grove, schatting te kunnen maken van de emissie in deze landen is gebruik gemaakt van verbruiksfactoren voor 1998, die zijn afgeleid uit Nederlandse gegevens. Deze zijn vervolgens gecombineerd met informatie over de ruimtelijke verdeling van verschillende typen van landgebruik, zoals grasland, granen, boomgaarden etc. De emissiefactoren voor de verschillende
bestrijdingsmiddelen zijn afgeleid uit informatie over de totale Nederlandse emissie van de stof en het gebruik van die stof volgens het CBS. Het gebruik van een stof per land is vervolgens ‘geschaald’ op basis van informatie over areaal waarop de stof (mogelijk) toegepast wordt (EU, 2000) voor een aantal stoffen ontbrak dergelijke informatie en was het niet mogelijk op deze wijze schattingen van emissies uit buitenlandse bronnen te maken. Het zal duidelijk zijn dat deze werkwijze niet optimaal is en niet leidt de hoogst mogelijke nauwkeurigheid. De benodigde gegevens zijn op dit moment echter niet (vrij) beschikbaar.

2.3.3 Het transport- en depositemodel

Voor het berekenen van de verspreiding en atmosferische depositie van de verschillende verontreinigende stoffen is gebruik gemaakt van het door het RIVM ontwikkelde verspreidings- en depositemodel OPS (Operationeel model Prioritaire Stoffen)

Het OPS model

Het OPS berekent de concentratie van een stof in lucht en neerslag op een bepaalde plaats als gevolg van een emissie op een andere plaats. Voor de huidige studie is versie 3 van het OPS-model gebruikt (Van Jaarsveld, 1989, 1995). De bijdragen aan de concentratie en depositie op een bepaalde plaats waarvoor de berekening uitgevoerd wordt (receptor), worden voor alle bronnen afzonderlijk berekend met behulp van zogenaamde terugwaartse trajectoriëën. Deze trajectoriëën beschrijven de weg die de lucht (met daarin de geïmiteerde stof) afgelegd heeft vanaf bron tot aan de receptor. De verspreiding wordt berekend met een wiskundige beschrijving van een pluim, de zogenaamde *Gaussische* pluim formulering. Het ruimtelijk oplossend vermogen van het model wordt grotendeels bepaald door de resolutie van de gebruikte emissiebestanden. Rondom een individuele puntbron kan het oplossend vermogen in de orde van 100x100 m zijn, op landelijke schaal is 5x5 km een praktische ondergrens.
De benodigde invoergegevens worden besproken:

Meteorologische gegevens

Bij bovengenoemde berekeningen spelen meteorologische parameters zoals de windrichting en windsnellheid uiteraard een belangrijke rol. De hier gerapporteerde berekeningen zijn uitgevoerd op basis van de meteorologische gegevens voor het jaar 2000.

Stofspecifieke gegevens

Tijdens het transport door de atmosfeer kunnen stoffen worden afgebroken door reacties met ozon of hydroxidradicalen. Daarnaast treden verliezen op en daalt de concentratie door droge en natte depositie. Met de invloed van deze verliesprocessen wordt in het OPS rekening gehouden. Het OPS bevat stof-specifieke parameters voor een aantal stoffen. Zo zijn bijvoorbeeld de stof-specifieke depositie-snelheden gebruikt, zoals ze ook zijn gebruikt voor het berekenen van de droge depositie uit de metingen, afgeleid m.b.v. het model *SimpleBox* (Van der Meent, 1993) en het twee film model voor de depositie naar water (Liss and Slater, 1974) (paragraaf 2.2.1 en Bijlage I). Daarnaast wordt de natte depositie berekend met behulp van de zogenaamde washout coëfficiënt.
De afbraak snelheid in lucht is voor de bestrijdingsmiddelen afgeleid m.b.v. het programma AOPWIN 1.88. (Atkinson, 1991) Dit programma berekent de omzettingssnelheid door hydroxil (OH) radicalen op basis van structuurkenmerken van de stof.
De atmosferische depositie

Met behulp van het verspreidingsmodel wordt uiteindelijk de concentratie boven de receptor en de depositie berekend. Daarbij wordt de bijdrage van alle bronnen gesommeerd. In bijlage II staan de parameters die in het kader van deze studie gehanteerd zijn voor het berekenen van de depositie van pesticiden.

Het model levert voor elk kaartvierkant van 5x5 kilometer de atmosferische depositie op. Verder kan met het model de relatie gelegd worden tussen bronnen en de depositie. Er kan een schatting worden gemaakt van de belasting van zo’n kaartvierkant, en de bijdrage van brongebieden (bijvoorbeeld andere provincies, stroomgebieden, buitenland) aan de depositie op dat kaartvierkant.
3. Resultaten

3.1 Inleiding

In dit hoofdstuk wordt achtereenvolgens besproken:

– de concentratie in lucht en in neerslag
– de belasting van oppervlaktewater
– de vergelijking van gemoduleerde depositie met gemeten depositie
– de bijdrage van verschillende brongebieden aan de belasting van waterbeheersgebieden
– de modellering van het effect van atmosferische belasting op concentraties in enkele typische watersystemen.

3.2 Concentraties in neerslag en lucht

3.2.1 Kwaliteitsborging

Hoe de kwaliteit van de monsterneming en de chemische analyse gedurende het programma wordt bewaakt is beschreven in Duyzer et al. (1999). Bij het vullen van de database met de analyse resultaten wordt daarom uitgegaan van een goede kwaliteit van de chemische analyse. Door specifieke problemen of artefacten tijdens de monsterneming kunnen echter nog fouten ontstaan. Na vulling van de database zijn overzichten gemaakt van het voorkomen van elke stof in lucht en in neerslag over de gehele database (zie hierna enkele voorbeelden). Deze overzichten zijn alle handmatig beoordeeld. Door het toepassen van deze procedure komen uitblijvers en trendbreuken in gegevens snel aan het licht. Daarbij wordt rekening gehouden met het verwachte patroon van voorkomen van stoffen enzovoort.

In de voorbereidingsfase van het onderzoek is uitgebreid onderzoek uitgevoerd naar de kwaliteit van de analyse. De analyse van de monsters vond plaats met de GC-MS methode (zie Duyzer et al. 1999). Ondanks de identificatie op grond van specifieke massa’s is er toch soms onzekerheid over de juistheid van de identificatie. Voor azinphos-methyl, coumaphos en metabenzthiazuron bleek, dat de identificatie op basis van twee pieken in het massaspectrum niet voldoende uitsluitgaf, na controle van de identificatie bij een compleet massaspectrum. De analyseresultaten van deze stoffen zijn daarom niet in deze rapportage opgenomen.

Verder wordt door het RIVM nog een beperkt aantal metingen uitgevoerd van stoffen (waaronder lindaan) op de meetlocatie de Zilk van het landelijk Meetein Luchtkwaliteit. Figuur 4 toont de vergelijking van de meetresultaten van het RIVM en TNO. Ondanks de verschillende midde-
lingperioden komen het verloop in de tijd en de maximum waarden komen redelijk overeen. De overeenkomst is redelijk goed te noemen. Belangrijk onderscheid tussen de beide resultaten is de behandeling van de monsters waarin lindaan niet wordt aangetroffen. Bij de RIVM monsters worden concentraties beneden de detectiegrens gerapporteerd met een waarde. Bij de TNO monsters worden alle positieve identificaties gerapporteerd. Deze verschillen in de werkwijze leiden tot het schijnbaar systematische verschil in de resultaten in de winterperiode.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{Vergelijking van gemeten contracties van Lindaan in neerslag monsters van het RIVM-meetstation de Zilk.}
\end{figure}

3.2.2 Verdeling over de fasen

Zoals hiervoor vermeld zullen stoffen in lucht zich verdelen over de gasfase en de deeltjesfase (zwervend stof of aërosol) afhankelijk van hun dampspanning en de concentratie van deeltjes. Deze verdeling bepaald hoe de stof zich in de atmosfeer gedraagt. Voor de modellering van de verspreiding door de lucht en de depositie is het daarom belangrijk hoe een stof is verdeeld over deze twee fasen. De verdeling van de PAK en PCB’s tussen de gasfase en de aërosolfase en het voorkomen van stoffen in de lucht dan wel in de neerslag kan goed worden verklaard op basis van theoretische overwegingen. Voor de pesticiden is de overeenkomst tussen de theoretische en waargenomen verdelingen slecht te noemen. Naar een verklaring voor deze afwijking is geen uitgebreid onderzoek gedaan. Waarschijnlijk spelen de kwaliteit van de, in de vergelijking gebruikte, parameters, zoals de dampspanning en de Henry-coëfficiënt, de kennis over de snelheid waarmee het evenwicht tussen gasfase en deeltjesfase zich instelt in relatie tot de transportafstand door de atmosfeer evenals meetartefacten die samenhangen met de detectiegrens hierbij een rol.

De fractie van een stof die in neerslag wordt opgenomen hangt ook af van allerlei fysische parameters zoals de dampspanning en de oplosbaarheid in de neerslag. Voor PAK en PCB’s was de overeenkomst tussen de verwachte verhouding tussen de concentratie in neerslag en die in lucht, enerzijds en de waargenomen verhouding anderzijds, goed. Voor de groep pesticiden kwamen deze verhoudingen totaal niet overeen.

In Duyzer en Vonk (2001) is uitgebreid ingegaan op de verdeling van stoffen over de gas en aërosolfase en de verhouding tussen de concentratie in lucht en die in neerslag.

STOWA
3.2.3 Concentratie verloop gedurende de meetperiode

Toepassing in het voorjaar

Propachloor is een herbicide waarvan de toelating sinds augustus 2001 is vervallen. Het is zeer persistent in water en is giftig voor vissen. Het werd nog slechts voor een aantal toepassingen toegelaten als landbouwkundig onmisbare stof, voornamelijk in de uienteelt. Figuur 5 en Figuur 5 laten de concentraties in lucht en neerslag zien voor een aantal stations waar propachloor het meeste werd aangetroffen. De concentraties zijn in het jaar 2001 al duidelijk afgenomen. Peiocentraties zijn gedaald. Propachloor kwam zowel in 2000 als 2001 in ongeveer 20% van de neerslagmonsters voor, in concentraties boven de drinkwaternorm van 100 ng/l.

![propachloor](image)

Propachloor

![Propachloor graph]

Atrazin

![Atrazin graph]

Atrazin (Figuur 7) is een herbicide waarvan de toetaling in 1999 is vervallen, vanwege de persistentie en uitspoelinggevoeligheid van de stof. Het komt nog steeds veel voor in neerslagmonsters, in de periode van april tot en met september. De hoogste concentraties worden in 2001 wederom in het Zuiden van het land gevonden: Wynandsrade, Yerseke en de Groote Peel. Het lijkt dus afkomstig te zijn uit België en Frankrijk, waar het middel niet verboden is. België heeft veel zandgrond, waarop mais wordt geteeld. In die teelt wordt veel...
veel zandgrond, waarop maïs wordt geteeld. In die teelt wordt veel atrazin gebruikt. De stof is, net als in het jaar 2000, zeer weinig in lucht aangetroffen.

Toepassing in het najaar

Trifluralin (Figuur 7) wordt toegepast als herbicide in wintergranen. In Nederland is het sinds 1999 niet meer toegelaten. *Trifluralin* is vrij persistent in de bodem. Het concentratieverloop voor *trifluralin* is in overeenstemming met het gebruik van de stof van september tot december: hoge concentraties worden in de winter gevonden. Er is echter ook een gebruikspiek te zien van april tot en met juni in 2001, waarin een gradiënt van Zuid naar Noord Nederland zichtbaar is (hoog in Yerseke, Wynandsrade, Groote Peel, Egmond, en de Zilk, laag in de noordelijke provincies, waar toch veel wintergranen worden verbouwd). De aanwezigheid van *trifluralin* in neerslagmonsters wordt waarschijnlijk veroorzaakt door emissies in het buitenland, die naar Nederland zijn getransporteerd via de lucht.

![trifluralin](image)

Stoffen die gedurende het hele jaar worden toegepast

DNOC is een stof waarvan de toelating in de loop van het jaar 2000 is vervallen. Het werd toegepast als loofdoder en herbicide, gedurende het hele jaar.
Figuur 9 Het verloop van de concentratie van DNOC in lucht voor de verschillende stations in 2000 en 2001.

DNOC is verboden vanwege de gevoeligheid voor uitspoeling naar het grondwater. Figuur 9 laat een dalende verloop zien in de concentraties in neerslag. Dit verloop is niet goed zichtbaar in de concentraties in luchtmonsters (Figuur 8). DNOC werd op alle stations nog wel zeer regelmatig aangetroffen. Gemiddeld over het jaar en over alle stations zijn de concentraties in neerslag ongeveer gehalveerd in de periode van 2000 tot 2001. Het concentratieniveau ligt echter nog steeds boven de drinkwaternorm van 100 ng/l.

Figuur 10 Het verloop van de concentratie van DNOC in neerslag voor de verschillende stations in 2000 en 2001.

STOWA

Naast stoffen waarvoor regelgeving geldig is, zijn er nog andere interessante stoffen die hier worden behandeld. Een stof die steeds populairder wordt door het wegvallen van andere middelen is *fluazinam*. *Fluazinam* (Figuur 12) is matig afbreekbaar, tot persistent in de grond, maar afbreekbaar in water. Het is een fungicide dat wordt gebruikt voor het behandelen van plantgoed (dompelen), in de aardappelteelt en in het veld in de bollenteelt. Deze stof kwam in het jaar 2000 al voor in neerslag boven de drinkwaternorm; in 2001 is het aantal monsters boven de drinkwaternorm gestegen naar ruim 4%. Het werd in hoge concentraties aangetroffen in lucht en neerslag monsters op de meetlocaties Veendam, Ketelhaven, Anna Paulowna, Yerseke en Wynandsrade.

Terbutylazin is een stof die als herbicide in de teelt van aardappelen en erwten wordt gebruikt. De stof is persistent in de bodem, en zeer persistent in natuurlijk water. Terbutylazin staat op de saneringslijst van het MJP-G. Tenminste één omzettende producten kan uitspoelen naar het grondwater. De concentratie in neerslag is in 2001 gestegen. Ook het aantal keren dat de norm voor drinkwater wordt overschreden is gestegen.

Polaire pesticiden

In het voorjaar van het jaar 2000 werden enkele neerslagmonsters aangeboden aan Omegan voor onderzoek naar de concentratie van polaire pesticiden. Daarbij was de beperkte hoeveelheid monster soms een probleem. Alleen isoproturon werd regelmatig aangetroffen. De concentratie van isoproturon overschreed daarbij in Wijnandsrade enkele malen de norm voor drinkwater. Ook diuron, penicyuron, metoxuron en metabromuron werden enkele malen aangetroffen. Carbendazim kon niet worden aangetoond. Bijlage VIII geeft een overzicht van de analyseresultaten.
3.2.4 Gemiddelde concentraties in lucht

Ongeveer 50 verschillende pesticiden, 18 PAK en zeven PCB’s konden worden aangetoond in lucht. De landelijk gemiddelde concentraties, percentages waarin de stoffen werden aangetoond en de gemiddelde concentraties van de monsters, waarin de stoffen werden aangetroffen in de jaren 2000 en 2001 in lucht, worden gegeven in Bijlage II. Aldrin, 2,4-D, diazinon, deltametrin, dicofol, disulfoton, fenitrothion, fenthion, fosfamidon, heptenefos, metamitron, methomyl, parathion-methyl, en triadimenol konden niet in lucht worden aangetoond.

Figuur 13 laat de gemiddelde concentraties zien van pesticiden die regelmatig in luchtmonsters zijn aangetroffen.

Het percentage van monsters waarin de PAK in lucht zijn aangetoond is voor beide jaren globaal hetzelfde. Slechts benzo[a]-antraceen, chryseeen en dibenz[a,h]-antraceen zijn in 2001 minder vaak aangetroffen. De concentraties in lucht zijn voor de PAK voor beide jaren vergelijkbaar (Figuur 14).
Het percentage van PCB’s dat is aangetroffen in luchtmonsters is in 2001 gedaald ten opzichte van het jaar 2000 (Figuur 15). Het gaat vooral om de PCB’s 138, 153, 28 en 8. PCB-180 is niet meer aangetoond. Deze verschillen worden waarschijnlijk mede veroorzaakt door een noodzaakelijke wijziging in de analytische werkwijze waardoor de detectiegrens wijzigde. De concentraties in de luchtmonsters in 2001 zijn verder vergelijkbaar met de concentraties in het jaar 2000.

Het blijkt dat de concentraties van de pesticiden meer variëren tussen beide jaren dan de concentraties van de PCB en PAK. Dit wordt wellicht veroorzaakt door verschillen in gebruik, en dus emissie, van de pesticiden in de beide jaren, terwijl de emissie van PAK en PCB niet veel is veranderd.
3.2.5 Gemiddelde concentraties in neerslag

Pesticiden

De concentraties van pesticiden in neerslag zijn weergegeven in Bijlage II. Ongeveer 50 pesticiden konden in neerslag worden aangetoond. Aldrin, biteranol, deltametrin, dicofol, disulfoton, endrin, fosfamidon, heptachloor, heptachloor-epoxide, heptenefos, methomyl o,p-DDE, telodrin, triadimenol en triazofos konden niet in neerslag worden aangetoond.

Figuur 16 laat de jaargemiddelde concentraties van die pesticiden zien, die in meer dan tien procent van de neerslagmonsters zijn aangetroffen.

Opvallend is weer het grote aantal herbiciden en fungiciden in deze figuur. De concentraties van de meeste herbiciden en fungiciden zijn in 2001 gedaald met ongeveer een factor twee, bijvoorbeeld DNOC, chlorophylam en propachlor. Uitzonderingen zijn ethofumesaat (H), terbutylazine (H) en fluazinam (F), waarvan de concentratie is gestegen in 2001. Ook herbicides die in Nederland niet meer zijn toegelaten, atrazine en trifluralin, stegen in concentratie in 2001.

Vergelijking met normconcentraties

Voor de meeste stoffen in het onderzoek bestaat geen kwaliteitsnorm voor concentraties in lucht of neerslag. Alleen voor benzof[a]pyraeen is een kwaliteitsnorm voor buitenlucht afgeleid. Deze waarde van 1 ng/m³ werd niet overschreden. Teneinde enig inzicht in de hoogte van de gevonden concentratie, zijn de concentraties van pesticiden in neerslag vergeleken met het Maximaal Toelaatbaar Risico niveau (MTR) voor oppervlaktewater (Tabel 4) Deze waarde heeft formeel geen betekenis voor neerslag, maar geeft een eerste indruk van de mogelijke toxiciteit van de waargenomen concentratie. In watersystemen die alleen door neerslag worden gevoed zou de concentratie kunnen oplopen tot die in neerslag. Verliesprocessen in het oppervlaktewater en verdunning zullen er doorgaans toe leiden dat de concentratie in het oppervlaktewater nooit het niveau bereikt. Aan de andere kant kan de invoer via neerslag niet snel tot MTR overschrijding leiden wanneer de concentratie in de neerslag onder het MTR niveau ligt.
Een andere waterkwaliteitsnorm is die voor de bereiding van drinkwater. Deze heeft ook geen formele betekenis voor neerslag maar geeft opnieuw een indicatie. In Tabel 5 staan de pesticiden die de drinkwatervorm hebben overschreden.

Ook stoffen die niet meer zijn toegelaten, bijvoorbeeld wegens hoge persistentie, of toxiciteit, kunnen nog in neerslag (en lucht) worden aangetroffen (Tabel 6).

Tabel 4 MTR overschrijdende stoffen in neerslag, met het percentage maand-monsters dat het MTR overschrijdt, de maximale MTR overschrijding en de toepassing.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Toepassing</th>
<th>MTR</th>
<th>% > MTR</th>
<th>% > MTR</th>
<th>Maximum MTR overschrijding (x MTR) 2000</th>
<th>Maximum MTR overschrijding (x MTR) 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ng/l</td>
<td>2000</td>
<td>2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>captan</td>
<td>F</td>
<td>110</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>chloorfenvinfos</td>
<td>I</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>chloorpyrophos-methyl</td>
<td></td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>chloorthalonil *</td>
<td>F</td>
<td>10</td>
<td>51</td>
<td>24</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>diazinon</td>
<td>I</td>
<td>37</td>
<td>0,4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>dichlofrovo</td>
<td>I</td>
<td>0,7</td>
<td>21</td>
<td>29</td>
<td>88</td>
<td>69</td>
</tr>
<tr>
<td>endosulfan I</td>
<td>I/A</td>
<td>20</td>
<td>0,4</td>
<td>0,4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>parathion-ethyl</td>
<td>I</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>methiocarb</td>
<td>Breed</td>
<td>16</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>metabolachlor</td>
<td>H</td>
<td>200</td>
<td>0,4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>mevinfos</td>
<td>I</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>propachlor</td>
<td>H</td>
<td>1300</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>pirimifos-methyl</td>
<td>I/A</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>498</td>
</tr>
<tr>
<td>propoxur</td>
<td>I</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>pyrazosof</td>
<td>F</td>
<td>40</td>
<td>0,4</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>terbutylazin*</td>
<td>H</td>
<td>190</td>
<td>0</td>
<td>0,4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>trifluralin</td>
<td>H</td>
<td>38</td>
<td>0</td>
<td>0,4</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

a aantal locaties in 2001 verhoogd van 4 naar 18
I: insecticide A: acaricide H: herbicide F: fungicide

In de jaren 2000 en 2001 overschreden tweeëntwintig pesticiden de drinkwatervorm, waaronder acht fungiciden, tien herbiciden twee insecticiden en twee stoffen die als insecticide en acaricide worden gebruikt (Figuur 17, Tabel 5) Bij de fungiciden kwam procymidon, die in 2000 nog opviel vanwege de hoogte van de overschrijding, in 2001 nog uitsluitend onder de drinkwatervorm voor in neerslag. Zeven herbiciden overschreden de drinkwatervorm; MCPA en metolachlor kwamen in 2001 niet meer boven de drinkwatervorm voor. De overschrijving van chloorproflam, die in het jaar 2000 opviel, is nu sterk gereduceerd in het aantal keren dat de stof werd aangetroffen en het concentratienniveau. Van de insecticiden kwam dimethoat niet meer boven de norm, terwijl pirimifos-methyl in 2001 wel boven de norm voorkwam. Breed inzetbare

STOWA
stoffen als DNOC en methiocarb kwamen ook in 2001 boven de norm, waarbij het concentratie-niveau van het verboden DNOC was gehalveerd. DNOC overschreed ook in 2001 in bijna alle neerslagmonsters de drinkwaternorm!

Figuur 17 Gemiddelde concentraties van pesticiden die de drinkwaternorm van 100 ng/l hebben overschreden. Het gemiddelde is bepaald uit de monsters die de norm overschreden.
Tabel 5

Stoffen die de drinkwaternorm in neerslag overschrijden (100 ng/l), met het percentage monsters dat de norm overschrijdt, en de gemiddelde concentratie in die monsters.

<table>
<thead>
<tr>
<th>Stof</th>
<th>% monsters > drinkwater norm 2000</th>
<th>% monsters > drinkwater norm 2001</th>
<th>Gemiddeld > drinkwater norm (ng/l) 2000</th>
<th>Gemiddeld > drinkwater norm (ng/l) 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungiciden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>captan</td>
<td>0</td>
<td>1,3</td>
<td>0</td>
<td>537</td>
</tr>
<tr>
<td>chloorthalonil *</td>
<td>2,6</td>
<td>1,8</td>
<td>325</td>
<td>149</td>
</tr>
<tr>
<td>fluazinam</td>
<td>0,4</td>
<td>4,4</td>
<td>155</td>
<td>136</td>
</tr>
<tr>
<td>prochloraz</td>
<td>0,4</td>
<td>0,4</td>
<td>126</td>
<td>152</td>
</tr>
<tr>
<td>procymidon</td>
<td>0,9</td>
<td>0</td>
<td>193</td>
<td>0</td>
</tr>
<tr>
<td>pyrazofos</td>
<td>0,4</td>
<td>0</td>
<td>320</td>
<td>0</td>
</tr>
<tr>
<td>toclofos-methyl</td>
<td>0</td>
<td>0,4</td>
<td>0</td>
<td>105</td>
</tr>
<tr>
<td>vinclozolin *</td>
<td>2,6</td>
<td>1,3</td>
<td>174</td>
<td>131</td>
</tr>
<tr>
<td>Herbiciden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atrazine</td>
<td>2,6</td>
<td>4,8</td>
<td>130</td>
<td>166</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>1,3</td>
<td>0,4</td>
<td>191</td>
<td>167</td>
</tr>
<tr>
<td>ethofumesaat</td>
<td>0</td>
<td>1,8</td>
<td>0</td>
<td>215</td>
</tr>
<tr>
<td>MCPA</td>
<td>0,4</td>
<td>0</td>
<td>155</td>
<td>0</td>
</tr>
<tr>
<td>metolachloor</td>
<td>1,8</td>
<td>0</td>
<td>183</td>
<td>0</td>
</tr>
<tr>
<td>propachlor</td>
<td>21,1</td>
<td>19,3</td>
<td>446</td>
<td>312</td>
</tr>
<tr>
<td>terbutylazine *</td>
<td>5,3</td>
<td>2,6</td>
<td>115</td>
<td>173</td>
</tr>
<tr>
<td>triallaat</td>
<td>2,2</td>
<td>0,4</td>
<td>226</td>
<td>260</td>
</tr>
<tr>
<td>chloprofam</td>
<td>22,8</td>
<td>14,5</td>
<td>419</td>
<td>245</td>
</tr>
<tr>
<td>Insecticiden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lindaaan</td>
<td>3,9</td>
<td>1,3</td>
<td>117</td>
<td>196</td>
</tr>
<tr>
<td>dimethoat</td>
<td>1,8</td>
<td>-</td>
<td>144</td>
<td>-</td>
</tr>
<tr>
<td>pirimifos-methyl</td>
<td>-</td>
<td>3,1</td>
<td>-</td>
<td>328</td>
</tr>
<tr>
<td>Overig</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNOC</td>
<td>99,6</td>
<td>98,2</td>
<td>1075</td>
<td>471</td>
</tr>
<tr>
<td>PCP</td>
<td>0,4</td>
<td>0</td>
<td>165</td>
<td>0</td>
</tr>
<tr>
<td>methiocarb</td>
<td>0</td>
<td>0,9</td>
<td>0</td>
<td>103</td>
</tr>
</tbody>
</table>

* aantal locaties in 2001 verhoogd van 4 naar 18
- niet bepaald

Atrazin, DNOC, propachlor, trifluralin en mevinfos werden, ondanks het vervallen van de toelating in Nederland in 2000, aangetroffen in neerslag. Tabel 6 geeft een overzicht van de concentratie en de frequentie van voorkomen van deze stoffen.

Tabel 6

<table>
<thead>
<tr>
<th>Stof In neerslag</th>
<th>toelating vervaller in het jaa</th>
<th>gebruik</th>
<th>% > DL 2000</th>
<th>% > DL 2001</th>
<th>Concentratie 2000 (ng/l)</th>
<th>Concentratie 2001 (ng/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>atrazin</td>
<td>1999</td>
<td>H</td>
<td>21</td>
<td>24</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>DNOC</td>
<td>2000</td>
<td>B</td>
<td>98</td>
<td>98</td>
<td>1061</td>
<td>463</td>
</tr>
<tr>
<td>endosulfan II</td>
<td>I/A</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1,5</td>
<td>0,05</td>
</tr>
<tr>
<td>propachlor</td>
<td>2000</td>
<td>H</td>
<td>41</td>
<td>35</td>
<td>104</td>
<td>68</td>
</tr>
<tr>
<td>trifluralin</td>
<td>1999</td>
<td>H</td>
<td>27</td>
<td>44</td>
<td>2,2</td>
<td>3,7</td>
</tr>
<tr>
<td>mevinfos</td>
<td>2000</td>
<td>I</td>
<td>0</td>
<td>1</td>
<td>0,2</td>
<td>0,1</td>
</tr>
</tbody>
</table>

I: insecticide A: acaricide H: herbicide F: fungicide

STOWA 30
De concentratie van atrazine (Figuur 7) en trifluralin (Figuur 8) nam in 2001 zelfs licht toe. Het voorkomen van beide herbiciden in lucht en neerslag in Nederland suggereert een bijdrage vanuit het buitenland.

Van een aantal pesticiden, die een tijdelijke toelating hadden vanwege hun landbouwkundige onmisbaarheid, is de toelating in de loop van 2001 vervallen. Het betreft de stoffen carbfuran, carbofuran, chlopyrifos, chloridazon, dichlofenvos, fenbutatinoxide, parathon-ethyl, penconazole, pirimifos-methyl en simazin.

Tabel 7 Stoffen die in de loop van 2001 niet meer zijn toegelaten. De tabel laat zien wat de toepassing van de stof is, welk percentage van de neerslagmonsters de detectie-limiet overschrijdt en wat de gemiddelde concentraties de jaren 2000 en 2001 waren.

<table>
<thead>
<tr>
<th>Stof in neerslag</th>
<th>toelating vervallen in het jaar</th>
<th>gebruik</th>
<th>% > DL 2000</th>
<th>% > DL 2001</th>
<th>Concentratie 2000 (ng/l)</th>
<th>Concentratie 2001 (ng/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>chloorthalonil 1</td>
<td>2001</td>
<td>F</td>
<td>54</td>
<td>36</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>chlopyrifos 2</td>
<td>2001</td>
<td>I</td>
<td>2</td>
<td>0</td>
<td>0,4</td>
<td>0,2</td>
</tr>
<tr>
<td>diazinon</td>
<td>2001</td>
<td>I</td>
<td>0,4</td>
<td>0</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td>dichlofenvos 2,3</td>
<td>2001</td>
<td>I</td>
<td>0,4</td>
<td>10</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>lindaan 4</td>
<td>2001</td>
<td>I</td>
<td>14</td>
<td>6</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>mecoprop</td>
<td>2001</td>
<td>H</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>pirimifos-methyl 2</td>
<td>2001</td>
<td>I/A</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>10,3</td>
</tr>
<tr>
<td>pyrazofos</td>
<td>2001</td>
<td>F</td>
<td>0,4</td>
<td>-</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>simazin 2</td>
<td>2001</td>
<td>H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>triallaat</td>
<td>2001</td>
<td>H</td>
<td>68</td>
<td>10</td>
<td>21</td>
<td>4,4</td>
</tr>
</tbody>
</table>

- niet bepaald
I: insecticide A: acaricide H: herbicide F: fungicide
1 afwisselend wel/niet verboden.
2 stoffen die de status ‘landbouwkundig onmisbaar’ hadden
3 wel toegelaten voor veterinair gebruik als insecticide
4 stof is sinds 1990 alleen nog toegestaan als zaadbehandelingsmiddel.

PAK

PCB’s

Het percentage van PCB’s aangetroffen in neerslagmonsters is, net als het percentage in luchtmonsters, in 2001 gedaald ten opzichte van het jaar 2000. Het gaat vooral om de PCB’s 101, 118, 138 en 180. De gemiddelde concentraties over alle monsters zijn ook gedaald.

3.3 De belasting van de bodem en het oppervlaktewater met atmosferische depositie

In deze rapportage is voor die stoffen, die regelmatig in neerslag- en luchtdragers zijn aangetroffen, een schatting gemaakt van de droge depositiesnelheid naar bodem en oppervlaktewater, volgens de methode die al eerder in deze rapportage is besproken. Zo is een schatting gemaakt van de totale depositie naar het Nederlandse oppervlaktewater en naar Nederlandse bodem.

Voor het IJsselmeer, Noord-Holland en de Waddenzee is met behulp van metingen op de representatieve meetstations de atmosferische belasting berekend. De depositie naar het IJsselmeer is berekend op basis van de gegevens van de omliggende stations Stavoren, Ketelhaven, Andijk en Lelystad. De depositie naar de provincie Noord-Holland is berekend op basis van alle Noord Hollandse stations: Anna Paulowna, Andijk, Egmond en Aalsmeer. De depositie naar de Noordzee is berekend met behulp van metingen van de metelocaties Noordwijk en Lauwersme. Deze depositie is waarschijnlijk een overschatting van de werkelijke depositie op de Noordzee, aangezien concentraties van de pesticiden, die in Nederland gebruikt worden, af zullen nemen met de afstand tot de kust; hiermee is geen rekening gehouden. Uit de gemiddelde nette depositie en droge depositie van alle meetstations is de gemiddelde atmosferische belasting naar de rest van het Nederlandse oppervlaktewater en naar Nederlandse bodem berekend.

Tabel 8

De totale atmosferische depositie van pesticiden naar het Nederlands oppervlaktewater (2.793 km²), het oppervlaktewater in Noord-Holland (800 km²), de Noordzee (508126 km² in ton/jr), de Waddenzee (2.600 km²), het IJsselmeer (1.928 km²) en Nederlandse bodem (36.783 km²) (kg/jr). De betrouwbaarheid van de *vet gedrukte* stoffen is goed. Van de andere is de betrouwbaarheid laag (zie ook tekst). De scheef gedrukte "0" betekent dat de stof niet is aangetroffen.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0,8</td>
<td>4,8</td>
<td>0,9</td>
<td>2,3</td>
<td>15</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>aldrin</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atrazine</td>
<td>24</td>
<td>25</td>
<td>6</td>
<td>3</td>
<td>15</td>
<td>17</td>
<td>14</td>
<td>13</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>bentazon</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>0,04</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>19</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>bucitanol</td>
<td>39</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>captan</td>
<td>17</td>
<td>85</td>
<td>29</td>
<td>4</td>
<td>12</td>
<td>30</td>
<td>15</td>
<td>53</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>chlorehervinvis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>chloorprofam</td>
<td>557</td>
<td>290</td>
<td>142</td>
<td>15</td>
<td>1333</td>
<td>382</td>
<td>362</td>
<td>218</td>
<td>3765</td>
<td></td>
</tr>
<tr>
<td>chloorpyrrophos-methyl</td>
<td>1</td>
<td>1</td>
<td>0,2</td>
<td>0,02</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>80</td>
<td>38,2</td>
<td>15</td>
<td>3</td>
<td>84</td>
<td>61</td>
<td>-</td>
<td>30</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>chloridazon (pyrazon)</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deltametrin</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>demeton-S-methyl</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>diatrizone</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>diclofenac</td>
<td>685</td>
<td>443,7</td>
<td>140</td>
<td>42</td>
<td>809</td>
<td>352</td>
<td>413</td>
<td>356</td>
<td>499</td>
<td></td>
</tr>
<tr>
<td>dicloprinos</td>
<td>18</td>
<td>19,3</td>
<td>4</td>
<td>0,2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>dicofol</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethoat</td>
<td>6</td>
<td>3</td>
<td>0,2</td>
<td>0,1</td>
<td>0,4</td>
<td>6</td>
<td>1</td>
<td>81</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>dissulfuran</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNOC</td>
<td>2391</td>
<td>1207</td>
<td>324</td>
<td>181</td>
<td>2201</td>
<td>1207</td>
<td>1709</td>
<td>879</td>
<td>29248</td>
<td></td>
</tr>
<tr>
<td>endosulfan I</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,4</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>endosulfan II</td>
<td>4</td>
<td>0,8</td>
<td>0,1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>38</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>endrin</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>epoxiconazol</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethofumesaat</td>
<td>11</td>
<td>34</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>23</td>
<td>-</td>
<td>19</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>parathion-ethyl</td>
<td>0,3</td>
<td>0,2</td>
<td>0,2</td>
<td>0,1</td>
<td>0</td>
<td>0,4</td>
<td>0</td>
<td>3</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>fenitrothion</td>
<td>0,1</td>
<td>-</td>
<td>-</td>
<td>0,3</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STOWA 33
Atmosferische depositie

<table>
<thead>
<tr>
<th>Oppervlakte water NL 2000</th>
<th>Oppervlakte water NL 2001</th>
<th>Oppervlakte water Noord-Holland 2000</th>
<th>Noord-Zee ¹</th>
<th>Wadden-Zee</th>
<th>IJsselmeer ²</th>
<th>IJsselmeer ²</th>
<th>Bodem</th>
<th>Bodem</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/jr</td>
<td>kg/jr</td>
<td>ton/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
</tr>
</tbody>
</table>

1) De schattingen van de depositie van de Noordzee zijn onzeker (zie tekst).
2) Met het IJsselmeer wordt bedoeld de Rijkswateren in het IJsselmeergebied.

De in **vet** afgedrukte stoffen van tabel 8 hebben een redelijke betrouwbaarheid (zie ook Bijlage III). De andere stoffen zijn zo weinig boven de detectiegrens aangetroffen dat de betrouwbaarheid van de geschatte depositie gering is. Dit geldt voor aldrin, bitertanol, demetone-S-methyl, diazinon, endrin, fenithion, heptachlorepoxide, heptenofos, hexachloorebutadiene, malathion, *O.p*-DDD, *p,p*-DDT, prochloraz, telodrin, triademol, triazofos. In Bijlage III wordt nader ingegaan op de berekeningen die zijn uitgevoerd om de invloed van de detectiegrens te onderzoeken. Wanneer de onzekerheid in de geschatte depositie al gevolg van de detectiegrens groter is dan een factor twee en de stof in een lage frequentie (< 5%) wordt aangetroffen in neer- slag en lucht, dan wordt de betrouwbaarheid als gering beschouwd.
In Bijlage III wordt ook ingegaan op de verhouding tussen de bijdrage van de natte en de droge depositie.
Hoge waarden voor de depositie naar het Nederlandse oppervlaktewater werden in het jaar 2000 gevonden voor DNOC (2,4 ton per jaar voor Nederland), dichlobenil (0,7 ton) en chloorprofam (0,6 ton per jaar), propachloor (0,3 ton per jaar) en triallaat (0,2 ton per jaar). Verder werd een hoge depositie gevonden voor chloorthalonil, (bijna 0,1 ton per jaar) en vinclozolin (0,08 ton per jaar).
Voor een aantal pesticiden is de Nederlands gemiddelde depositie in 2001 sterk gedaald ten opzichte van 2000: de depositie van metolachloor is in 2001 éénvijfde van het niveau in 2000, de depositie van triallaat en dimethoat is in 2001 bijna één derde van het niveau in 2000, chloorprofam, DNOC, lindaan en procymidon zijn bijna gehalveerd in depositie, propachloor en dichlobenil zijn een kwart tot een derde gedaald in depositie. De depositie van 2,4-D, bentazon, fluazinam, methiocarb, en nenicos, is gestegen met een factor 2 tot 4 in 2001. Van de stoffen die in 2001 op 18 locaties zijn gemeten in plaats van vier steeg de depositie van ethofumesaat, kresoxim-methyl, terbutylazine, tetraboromobisphenol en vinclozolin ook met een factor 2 tot 4.
In Bijlage VI wordt nog nader ingegaan op de metingen in de provincie Noord-Holland. In opdracht van de provincie werden hier drie extra meetlocaties geplaatst. De landelijk hoogste depositie van een aantal pesticiden wordt op de meetlocaties Anna Paulowna en Andijk gevonden (zie Bijlage III). Dit heeft te maken met de specifieke ligging van de meetstations ten opzichte van brongebieden. De genoemde meetstations blijken relatief zwaar belast met stoffen die worden gebruikt in de bollenteelt en de aardappelteelt zoals chloorprofam, tolclofosmethyl, pyrazofos, procymidon, chloorpyriphos methyl en chloorthalonil.
De atmosferische depositie van PAK en PCB naar het Nederlands oppervlaktewater (2.793 km²) de Waddenzee (2.600 km²), de Noordzee (508126 km² in ton/jr), het IJsselmeer (1.928 km²) en Nederlandse bodem (36.783 km²) (in kg/jr). De betrouwbaarheid van de in bold gedrukte stoffen is goed. Van de andere is de betrouwbaarheid laag (zie ook tekst).

<table>
<thead>
<tr>
<th>Atmosfeerse depositie</th>
<th>Oppervlakte water NL</th>
<th>Oppervlakte water Noord-Holland</th>
<th>Norde- zee<sup>1</sup></th>
<th>Wadden- zee</th>
<th>IJsselmeer<sup>2</sup></th>
<th>Bodem</th>
<th>Bodem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
<td>kg/jr</td>
</tr>
<tr>
<td>PAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acenaften</td>
<td>700</td>
<td>454</td>
<td>139</td>
<td>92</td>
<td>712</td>
<td>461</td>
<td>463</td>
</tr>
<tr>
<td>acenaftyleen</td>
<td>52</td>
<td>44</td>
<td>13</td>
<td>2</td>
<td>19</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>antraceen</td>
<td>178</td>
<td>46</td>
<td>13</td>
<td>3</td>
<td>60</td>
<td>35</td>
<td>176</td>
</tr>
<tr>
<td>benzo[a]antraceen</td>
<td>36</td>
<td>19</td>
<td>6</td>
<td>3</td>
<td>23</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>benzo[a]pyreene</td>
<td>60</td>
<td>30</td>
<td>10</td>
<td>6</td>
<td>36</td>
<td>31</td>
<td>48</td>
</tr>
<tr>
<td>benzo[b]fluorantene</td>
<td>138</td>
<td>82</td>
<td>29</td>
<td>14</td>
<td>72</td>
<td>78</td>
<td>113</td>
</tr>
<tr>
<td>benzo[g,h,j]pyreene</td>
<td>53</td>
<td>33</td>
<td>12</td>
<td>6</td>
<td>33</td>
<td>34</td>
<td>41</td>
</tr>
<tr>
<td>benzo[k]fluorantene</td>
<td>89</td>
<td>59</td>
<td>21</td>
<td>11</td>
<td>46</td>
<td>61</td>
<td>80</td>
</tr>
<tr>
<td>chryseen</td>
<td>132</td>
<td>56</td>
<td>17</td>
<td>8</td>
<td>71</td>
<td>46</td>
<td>88</td>
</tr>
<tr>
<td>dibenzo[a]antraceen</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>fenantrene</td>
<td>2416</td>
<td>1974</td>
<td>645</td>
<td>160</td>
<td>1863</td>
<td>1442</td>
<td>1481</td>
</tr>
<tr>
<td>fluorantene</td>
<td>861</td>
<td>710</td>
<td>262</td>
<td>68</td>
<td>553</td>
<td>590</td>
<td>560</td>
</tr>
<tr>
<td>fluorene</td>
<td>1254</td>
<td>950</td>
<td>265</td>
<td>127</td>
<td>1142</td>
<td>711</td>
<td>793</td>
</tr>
<tr>
<td>indeno[1,2,3-cd]pyreene</td>
<td>49</td>
<td>32</td>
<td>11</td>
<td>7</td>
<td>29</td>
<td>34</td>
<td>38</td>
</tr>
<tr>
<td>naftideeen</td>
<td>1965</td>
<td>1786</td>
<td>567</td>
<td>102</td>
<td>1188</td>
<td>1017</td>
<td>1489</td>
</tr>
<tr>
<td>pyreene</td>
<td>484</td>
<td>382</td>
<td>121</td>
<td>32</td>
<td>274</td>
<td>296</td>
<td>269</td>
</tr>
</tbody>
</table>

1) De schattingen van de depositie van de Nordezee zijn onzeker (zie tekst).
2) Met het IJsselmeer wordt bedoeld de Rijkswateren in het IJsselmeergebied.

De depositie van alle PAK en PCB’s blijkt goed meetbaar met de gekozen methode. Zoals ook al aan de concentraties in neerslag te zien was, is de depositie van de meeste PAK in 2001 afge- nomen ten opzichte van het jaar 2000, met gemiddeld 40 procent. Alleen de depositie van dibenzo[a,h]-antraceen nam iets toe. De depositie van PCB’s is voor het jaar 2001 met 30 procent afgenomen ten opzichte van het jaar 2000. Veel van de maxima in de depositie van PCB’s en PAK worden gevonden aan de kust en in Noord-Holland: Egmond, Aalsmeer, en Noordwijk (Bijlage III).
3.4 Berekening van de atmosferische depositie met behulp van een verspreidingsmodel

De uit meetresultaten berekende atmosferische depositie over Nederland maakt het mogelijk om de kwaliteit van modellen, die de verspreiding en depositie van pesticiden berekenen, te beoordelen en zo mogelijk te verbeteren. Deze modellen kunnen vervolgens gebruikt worden in beleidsstudies omdat daarmee de relatie tussen de emissie en de depositie kwantitatief kan worden gelegd. Dat maakt het mogelijk het effect van beleidsscenario’s door te rekenen.

Met behulp van emissies vanuit de landbouw in Nederland en ruwe schattingen van emissies in het buitenland zijn modellberekeningen gedaan van de verspreiding en depositie voor een aantal pesticiden en PAK, die in de metingen veel zijn aangetroffen. Modellberekeningen uitgevoerd met emissies in Nederland leveren de bijdrages uit Nederland aan de depositie in Nederland, berekeningen met emissies in het buitenland leveren de buitenlandse bijdrage aan de depositie in Nederland. De som van beide bijdragen levert de totale depositie in Nederland op.

Voor carbendazim en glyfosaat zijn geen metingen uitgevoerd. De depositie is daarom afgeleid van modellberekeningen uitgevoerd voor die stoffen. De volgende tabel laat de berekende belasting zien. Omdat meetgegevens ontbreken is de onzekerheid in het resultaat onbekend.

De depositie van carbendazim en glyfosaat naar het Nederlandse oppervlaktewater, het IJsselmeer, het oppervlakte-water in Noord-Holland en de Nederlandse bodem uitgedrukt in kg/jaar afgeleid uit modellberekeningen.

<table>
<thead>
<tr>
<th></th>
<th>Oppervlakte-water</th>
<th>IJsselmeer</th>
<th>Oppervlakte-water</th>
<th>Nederlandse bodem</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbendazim</td>
<td>16</td>
<td>6</td>
<td>6</td>
<td>278</td>
</tr>
<tr>
<td>glyfosaat</td>
<td>68</td>
<td>40</td>
<td>35</td>
<td>1613</td>
</tr>
</tbody>
</table>

3.4.1 Vergelijking van modelresultaten met gemeten natte depositie in Nederland

De modellberekeningen, waarin emissies en meteorologische gegevens van het jaar 2000 zijn gebruikt, zijn vergeleken met gemeten natte depositie van het jaar 2000 (Figuur 27) Voor deze vergelijking zijn alleen stoffen gekozen die in meer dan tien procent van de monsters werden aangetroffen en waarvoor voldoende gegevens beschikbaar waren. Vergelijking van de droge depositie is minder goed mogelijk omdat stoffen minder vaak werden aangetroffen. Bovendien zijn zowel de schattingen met behulp van het model als de schatting aan de hand van de meting gebaseerd op dezelfde depositiesnelheid.

Tabel 10 toont de verhouding tussen de gemeten en de gemodelleerde depositie en de correlatiecoëfficiënt van de regressie tussen beide. De overeenkomst tussen modellen en metingen was voor een aantal stoffen redelijk goed. De verhouding tussen gemeten en gemodelleerde depositie lag tussen een half (model overschat een
factor twee) en twee (model onderschat een factor twee). Dit geldt voor atrazin, chloorproflam (2000) ethofumesaat (Figuur 37), procymidon (Figuur 31), propachloor en terbutylazine (Figuur 25). Voor deze stoffen was ook de correlatie tussen metingen en modelberekeningen goed. Dat wijst erop dat het model de ruimtelijke verdeling van die stoffen goed heeft berekend en dat de ruimtelijke verdeling van de emissies goed was. Figuur 30 en Figuur 31 laten het verloop van de natte depositie van atrazin en procymidon over Nederland zien. Procymidon is daarbij een voorbeeld van een stof die lokaal (in de bollenteelt) veel wordt gebruikt. Dit beeld komt zowel in de berekende als de gemeten concentratie naar voren. Heel anders is het beeld bij atrazin. Het gebruik van deze stof is al sinds 1999 niet meer toegestaan. Toch wordt deze stof in meetbare concentraties in de neerslag aangetroffen. De overeenkomst tussen het gemeten verloop van de depositie over het land en de depositie berekend op basis van alleen emissies in het buitenland ondersteunt het beeld dat de aangetroffen atrazin waarschijnlijk afkomstig is uit het buitenland.

Voor chloorthalonil (Figuur 35), DNOC (2001), en vinclozolin (Figuur 39) was de orde van grootte van de gemodelleerde depositie goed (factor ½ tot twee), maar de correlatie tussen model- en meetresultaten slecht.

De verhouding tussen gemeten en gemodelleerde depositie was groter dan tien (model onderschat met meer dan een factor tien), of kleiner dan één tiende (model overschat meer dan een factor 10) voor dichlorovos (Figuur 34) en fluazinam. De correlatie tussen de berekende en gemeten concentratie was redelijk voor deze stoffen. Dit zou kunnen betekenen dat de toewijzing van de emissies in Nederland nog redelijk goed is, maar de bronsterkte minder goed werd geschat.

Voor bentazon, dichlobenil, dimethoat, pirimifos-methyl, tolcofos-methyl, en triallaat (2000) was de vergelijking tussen de gemeten en berekende natte depositie slecht zowel wat correlatie betreft, als de orde van grootte van de depositie. De correlatie was goed voor triallaat in 2001 (Figuur 38).
Tabel 10 De over de meetlocaties gemiddelde verhouding tussen de gemeten en gemoduleerde natte depositie, voor de jaren 2000 en 2001, als ook de correlatiecoefficient r^2 afkomstig van de lineaire regressie. De modellering is gedaan met Nederlandse + buitenlandse emissies.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Opmerking</th>
</tr>
</thead>
<tbody>
<tr>
<td>atrazin</td>
<td>Emissies onderschat</td>
</tr>
<tr>
<td>bentazon</td>
<td>Kwaliteit metingen mogelijk onvoldoende</td>
</tr>
<tr>
<td>chloorprodam</td>
<td>Binnen factor 2</td>
</tr>
<tr>
<td>chloorthalonil</td>
<td>Binnen factor 2</td>
</tr>
<tr>
<td>dichlofenil</td>
<td>Emissies onderschat</td>
</tr>
<tr>
<td>dichlofuros</td>
<td>Binnen factor 2</td>
</tr>
<tr>
<td>dimethoaat</td>
<td>Kwaliteit metingen mogelijk onvoldoende</td>
</tr>
<tr>
<td>DNOC</td>
<td>Emissies onderschat</td>
</tr>
<tr>
<td>ethofumesaat</td>
<td>Binnen factor 2</td>
</tr>
<tr>
<td>fluazinam</td>
<td>Emissies overschat</td>
</tr>
<tr>
<td>procymidon</td>
<td>Binnen factor 2</td>
</tr>
<tr>
<td>propachloor</td>
<td>Binnen factor 2</td>
</tr>
<tr>
<td>terbutylazine</td>
<td>Binnen factor 2</td>
</tr>
<tr>
<td>tolclofomethyl</td>
<td>Kwaliteit metingen mogelijk onvoldoende</td>
</tr>
<tr>
<td>triallaat</td>
<td>Emissies onderschat</td>
</tr>
<tr>
<td>vinclozoln</td>
<td>Binnen factor 2</td>
</tr>
</tbody>
</table>

1) Stoffen zijn op vier locaties gemeten.

Deze tabel laat zien dat het model:
- de goede orde van grootte van depositie berekent voor *atrazin, chloorprodam, chloorthalonil, dichlofuros, ethofumesaat, procymidon, propachloor, terbutylazine* (2001) en *vinclozoln*,
- de depositie van *bentazon, dimethoaat en terbutylazine* (2000) sterk overschat,
- de depositie van *dichlofenil, en triallaat* sterk onderschat, ondanks dat bijdrages vanuit het buitenland niet zijn berekend.
Figuur 27 Vergelijking tussen met het OPS model berekende en gemeten waarden van de natte depositie van een aantal belangrijke pesticiden in het jaar 2000.
Voor chloorthalonil, ethofumesaat, terbutylazine, tolclofos-methyl en vinclozolin is de vergelijking tussen de modelresultaten en metingen in 2001 op 18 meetpunten te zien in Figuur 28.

De berekende natte depositie van de PAK benzo(a)pyreen en fluorantheen is ook met de gemeten waarden vergeleken. Figuur 29 laat voor benzo(a)pyreen nog enige correlatie zien tussen meting en model. Het model onderschat echter de gemeten natte depositie met ongeveer een factor drie. Er is ook weinig correlatie tussen de gemeten en berekende depositie van fluorantheen. Het absolute niveau van de depositie is daarbij nog redelijk goed geschat.
De vergelijking is slecht voor: DNOC, dimethoat, pirimifos-methyl, tolclofos-methyl en trialaat.
Voor dichlofenil waren geen schattingen van de emissies in het buitenland beschikbaar.

In Figuur 22 tot en met Figuur 38 wordt de ruimtelijke verdeling van de gemeten en gmodelleerde natte depositie over Nederland weergegeven van atrazine, procymidon, propachloor, terbutylazine, ethofumesaat en trialaat.
Figuur 31 De ruimtelijke verdeling van de gemodelleerde en gemeten natte depositie van procymidon (g/ha/jr) voor het jaar 2000.

Figuur 32 De ruimtelijke verdeling van de gemodelleerde en gemeten natte depositie van propachloor (g/ha/jr) voor het jaar 2000.
Figuur 33 De ruimtelijke verdeling van de gemodelleerde en gemeten natte depositie van terbutylazine (g/ha/jr) voor het jaar 2001.

Figuur 34 De ruimtelijke verdeling van de gemodelleerde en gemeten natte depositie van dichlorovos (g/ha/jr) voor het jaar 2000.
Figuur 35 De ruimtelijke verdeling van de gemodelleerde en gemeten natte depositie van chloorthalonil (g/ha/jr) voor het jaar 2001.

Figuur 36 De ruimtelijke verdeling van de gemodelleerde en gemeten natte depositie van vinclozolin (g/ha/jr) voor het jaar 2001.
Figuur 37 De ruimtelijke verdeling van de gemodelleerde en gemeten natte depositie van ethofumesat (g/ha/jr) voor het jaar 2001.

Figuur 38 De ruimtelijke verdeling van de gemodelleerde en gemeten natte depositie van triallaat (g/ha/jr) voor het jaar 2001.

Uit deze figuren blijkt, dat voor deze pesticiden de correlatie tussen de gemeten en gemodelleerde natte depositie en de orde van grootte van de gemodelleerde natte depositie, vrij goed is, behalve voor triallaat. Voor dit herbicide is correlatie voor het jaar 2001 redelijk (Figuur 38), maar is de orde van grootte van de gemodelleerde depositie slecht. De emissie is waarschijnlijk
sterk onderschat. De kwaliteit van de metingen van *triaaldae* in het jaar 2000 is waarschijnlijk niet goed, gezien de slechte correlatie tussen meting en model voor dat jaar.

3.4.2 Bijdragen van emissies van de verschillende provincies op deposities in waterschappen

Met behulp van het transport en depositiemodel OPS kan de relatie gelegd worden tussen bronnen (emissie van stoffen) en de depositie. Zo kan berekend worden wat de bron van een bepaalde depositie is. Door het transport en de depositie van de emissie per bron of de emissie per provincie met het model te berekenen, kan zo de bijdrage van die bron of provincie worden berekend. In het kader van deze studie is voor een beperkt aantal stoffen berekend:

1) wat de depositie in een beheersgebied is,
2) wat de bijdrage van de emissies uit de verschillende provincies in zo’n gebied is.

Met behulp van de verdeling van de emissies van een stof over het land kan een schatting gemaakt worden van de belasting van een gebied met die stof, en het aandeel van emissies buiten dat gebied. Voor vier pesticiden en twee PAK is berekend, wat het aandeel is van emissies in de verschillende provincies in Nederland op de belasting van die pesticiden in beheersgebieden. Figuur 39 tot en met Figuur 42 laten deze bijdragen zien voor de pesticiden *procydion*, *fluazinam*, *dichloorvos* en *chlorothalondi* en voor de PAK *benzo(apyrene*. Gezien de correlatie tussen modelberekeningen en metingen (Tabel 10) is het model redelijk tot goed in staat om voor deze stoffen de ruimtelijke verdeling over het land te berekenen. Naast de bijdragen kan ook de gemiddelde belasting per gebied afgelezen worden. Bij de interpretatie van de figuren moet echter rekening gehouden worden met eventuele over- of onderschatting door het model van de gemeten depositie waarden. In Figuur 40 kan bijvoorbeeld afgelezen worden dat de gemiddelde belasting van ‘waterschap Hunze en de AA’ met *fluazinam* ongeveer 3,3 gram per hectare is, terwijl de gemeten depositie van deze stof gemiddeld niet hoger was dan 0,45 gram per hectare, op het meetpunt met de hoogste waarde in Nederland. Voor *dichloorvos* en *chlorothalondi* onderschat het model de belasting. De modellering van de atmosferische depositie van *procydion* kwam goed overeen met de metingen. De gemeten totale depositie van *procydion* in Noord-Holland was gemiddeld 0,08 gram per hectare per jaar.

Figuur 39 laat zien dat een groot gedeelte van deze depositie afkomstig is uit de eigen provincie en dat het dat de totale belasting op waterkwaliteitbeheersgebieden daar varieert van 0,04 tot 0,07 gram per hectare per jaar.

Recentelijk voerden Bleeker en Duyzer (2002) een uitgebreide studie uit naar de belasting van het oppervlaktewater in het beheersgebied van het Zuiveringschapp Hollandse Eilanden en Waarden (ZHEW). Daaruit bleek dat de depositie van de verschillende pesticiden gebruikt in het gebied voor ongeveer 25-30% afkomstig was van emissies vanuit het gebied zelf.

Er is ook berekend wat het aandeel is van emissies in de verschillende provincies in Nederland op de belasting op elk van de meetlocaties, en welk gedeelte van de depositie uit het buitenland afkomstig is. Deze staan gegeven in bijlage VII.

STOWA
Figuur 39 Bijdragen van emissies van procymidon per provincie op de gemiddelde belasting met procymidon in de waterkwaliteitsbeheersgebieden (g/ha).

Figuur 40 Bijdragen van emissies van fluazinam per provincie op de gemiddelde belasting in de waterkwaliteitsbeheersgebieden (g/ha).
Figuur 41 Bijdragen van emissies van dichlorovos per provincie op de gemiddelde belasting in de waterkwaliteitsbeheersgebieden (g/ha).

Figuur 42 Bijdragen van emissies van chloorthalonil per provincie op de gemiddelde belasting in de waterkwaliteitsbeheersgebieden (g/ha).
Figuur 43 Bijdragen van emissies van Benzo(a)Pyreën per provincie en vanuit het buitenland op de gemiddelde belasting in de waterkwaliteitsbeheersgebieden (g/ha).

3.4.3 Het effect van atmosferische depositie van pesticiden op de concentraties in oppervlaktewater; vergelijking met normwaarden

Nadat stoffen via atmosferische depositie in het oppervlaktewater zijn aangekomen worden ze aan allerlei processen blootgesteld. Deze processen waaronder verdunning en afbraak leiden ertoe dat de concentratie uiteindelijk lager wordt dan de concentratie in de atmosferische deponitie. Met behulp van simulatie modellen kan de concentratie in de waterfase worden berekend. Er zijn verschillende modellen in de literatuur beschreven. In dit onderzoek is gewerkt met het Waterbox model (Bakker en van den Hout, 1993). Dit boxmodel berekent het lot van stoffen in water waarbij rekening wordt gehouden met de volgende processen:

- hechting van de stof aan in het water zwevend slib en sediment
- diffusie van een stof tussen water en sediment
- afbraak van de stof in water en sediment.

Het model berekent de concentratie in de situatie dat er volledig evenwicht is ontstaan tussen alle aan- en afvoerprocessen. Deze concentratie wordt berekend voor verschillende standaardwateren zoals sloten, vennen, rivieren en meren. Omdat voor het watersysteem ven de verdunning het laagst is wordt voor dit systeem de berekenende concentratie het hoogst. In dit onderzoek is daarom voor venen de concentratie berekend als indicator voor mogelijke problemen. De concentratie in de andere watersystemen wordt veel minder hoog. Tabel 12 geeft ter illustratie ook de berekenende concentratie in een groot meer. De tabel geeft voor een aantal verbindingen de concentratie die wordt berekend als gevolg van atmosferische depositie. Er is geen rekening gehouden met de belasting door andere bronnen zoals drift.
Voor de berekeningen is de jaarlijkse Nederlands gemiddelde atmosferische depositie naar oppervlaktewater gebruikt. De berekeningen zijn gedaan voor een aantal pesticiden, die in 2001 in het oppervlaktewater zijn aangetroffen.

Tabel 12 Concentraties in een ven en in een groot meer (in ng/l en als percentage van het MTR) ten gevolge van louter atmosferische depositie, berekend met het Waterbox model. Verder is de verhouding tussen de hoogste belasting die in Nederland op een bepaalde locatie werd aangetroffen en de gebruikte Nederlands gemiddelde belasting gegeven. De concentratie van Isoproturon werd alleen in monsters van één locatie bepaald. Die van trifénylition werd op vier locaties bepaald.

<table>
<thead>
<tr>
<th>Stof</th>
<th>MTR</th>
<th>Concentratie in een Ven</th>
<th>Concentratie in een groot meer</th>
<th>Concentratie in een groot ven</th>
<th>Concentratie in een ven (% van MTR)</th>
<th>Concentratie in een groot meer (% van MTR)</th>
<th>Verhouding tussen gemiddelde Belasting in NL en hoogste waarde (factor)</th>
<th>Locatie met hoogste waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>atrazin</td>
<td>2900</td>
<td>0,8</td>
<td>0,1</td>
<td>0,03</td>
<td>0,00004</td>
<td>2,3</td>
<td>WY</td>
<td></td>
</tr>
<tr>
<td>simazin</td>
<td>140</td>
<td>0,3</td>
<td>0,05</td>
<td>0,2</td>
<td>0,0003</td>
<td>6,0</td>
<td>GP</td>
<td></td>
</tr>
<tr>
<td>terbutylazine</td>
<td>190</td>
<td>11,7</td>
<td>0,7</td>
<td>6</td>
<td>0,0039</td>
<td>4,4</td>
<td>GP</td>
<td></td>
</tr>
<tr>
<td>chloorfeninfos</td>
<td>2</td>
<td>0,08</td>
<td>0,02</td>
<td>4</td>
<td>0,01</td>
<td>12,6</td>
<td>EG</td>
<td></td>
</tr>
<tr>
<td>dichloorvos</td>
<td>0,7</td>
<td>0,01</td>
<td>0,002</td>
<td>1</td>
<td>0,003</td>
<td>6,7</td>
<td>GP</td>
<td></td>
</tr>
<tr>
<td>isoproturon</td>
<td>320</td>
<td>40</td>
<td>4,8</td>
<td>13</td>
<td>0,01</td>
<td>1</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>lindaan</td>
<td>920</td>
<td>1,0</td>
<td>0,2</td>
<td>0,1</td>
<td>0,0002</td>
<td>3,1</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>2000</td>
<td>0,6</td>
<td>0,1</td>
<td>0,03</td>
<td>0,00005</td>
<td>2,0</td>
<td>YE</td>
<td></td>
</tr>
<tr>
<td>mecoprop</td>
<td>0,6</td>
<td>0,1</td>
<td>0,03</td>
<td></td>
<td>2,1</td>
<td>YE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>propachloor</td>
<td>1300</td>
<td>34</td>
<td>3,6</td>
<td>3</td>
<td>0,003</td>
<td>5,6</td>
<td>KE</td>
<td></td>
</tr>
<tr>
<td>trifénylition (fentin hydroxide)</td>
<td>5</td>
<td>0,7</td>
<td>0,1</td>
<td>14</td>
<td>0,03</td>
<td>1,9</td>
<td>VE</td>
<td></td>
</tr>
<tr>
<td>Benzo(a)pyreene</td>
<td>500</td>
<td>0,2</td>
<td>0,1</td>
<td>0,04</td>
<td>0,02</td>
<td>1,5</td>
<td>KE/LE</td>
<td></td>
</tr>
<tr>
<td>fluorenaat</td>
<td>500</td>
<td>18</td>
<td>8</td>
<td>3,5</td>
<td>1,5</td>
<td>12</td>
<td>EG</td>
<td></td>
</tr>
</tbody>
</table>

Voor *isoproturon, propachloor* en *simazin* werden in de literatuur zeer uiteenlopende waarden gevonden voor de halfwaardetijd in oppervlaktewater. De berekeningen zijn met de grootste halfwaardetijd uitgevoerd. Het MTR in oppervlaktewater werd voor geen van de onderzochte pesticiden overschreden als gevolg van de bijdrage van atmosferische depositie. Voor *isoproturon, propachloor* en *terbutylazine* werden concentraties in een ven berekend van enkele (tientallen) ng/liter, respectievelijk 13, 3 en 6% van het MTR van die stoffen.

De atmosferische depositie van organofosforverbindingen *dichloorvos* en *chloorfeninfos* leidt tot lage berekende concentraties in het oppervlaktewater. Zelfs in het meest gevoelige systeem (ven) ligt de concentratie beneden het MTR. Voor *dichloorvos* en *chloorfeninfos* werd wel de streefwaarde voor oppervlaktewater overschreden.

De tabel geeft ook nog aan de verhouding tussen de hier gebruikte landelijk gemiddelde depositie en de in het land, op een meetstation, gevonden hoogste jaargemiddelde depositie. Daaruit blijkt dat de concentratie van *terbutylazine, chloorfeninfos, dichloorvos, propachloor en trifénylition* in sommige brongebieden als gevolg van atmosferische depositie nog op zou kunnen lopen tot waarden tussen vijf en vijftig procent van de MTR waarde. Atmosferische depositie kan samen met andere bronnen gemakkelijk leiden overschrijding van normwaarden voor deze stoffen.

Naast het MTR niveau is ook het VR niveau belangrijk. Deze waarde is doorgaans 100x lager dan de waarde voor het MTR. Uit de tabel blijkt dat voor een aantal stoffen zoals *terbutylazine, chloorfeninfos, isoproturon, propachloor en trifénylition* VR concentratie in verschillende soorten oppervlaktewater overschreden kan worden door de bijdrage van atmosferische depositie alleen.

STOWA 52
Deze berekende waarden zijn evenwichtsconcentraties ten gevolge van de jaarbelasting van depositie. De concentraties in oppervlaktewater kunnen echter korte tijd na een hoge belasting, bijvoorbeeld in de maand dat het pesticide wordt gebruikt, tijdelijk veel hoger zijn dan de met dit model berekende evenwichtsconcentratie. Het gebruikte model is niet geschikt om deze verhoogde concentratie te berekenen.

Men dient zich bovendien wel te realiseren dat het doel van het hier gepresenteerde onderzoek was een landelijk beeld te verkrijgen. De meetstations zijn daarom alle zo gekozen dat ze ver van grote bronnen zijn gelegen. De depositie in de directe omgeving van deze bronnen is waarschijnlijk nog aanzienlijk hoger. Deze zou daarom ook gemakkelijker tot overschrijding van normwaarden kunnen leiden. In bijlage V wordt een voorbeeld uitgewerkt waarbij de concentratie op één km afstand van een bron vijftig keer hoger is dan op tien kilometer afstand van de bron. Bovendien blijkt dat binnen een straal van de eerste kilometer vanaf de bron tot 20% van de geëmitteerde hoeveelheid te kunnen deponeren.

Meer informatie over de belasting van het oppervlaktewater in de omgeving van de bron is te vinden in Baas en Bakker (1996). Daarin worden realistische schattingen gemaakt van de depositie in de omgeving van een glastuinbouw en de concentratie die daarvan het gevolg is in oppervlaktewater, bodem en lucht. Afhankelijk van verversingsgraad van het oppervlaktewater kan de concentratie in het oppervlaktewater oplopen tot 500 ng/l op korte afstand van het kassengebied.
4. **Discussie en conclusies**

4.1 **Inleiding**

Om te onderzoeken in hoeverre atmosferische depositie van (eco)toxische stoffen het oppervlaktewater en terrestrische ecosystemen belast kunnen modelberekeningen worden gebruikt en metingen. Daarbij vormen modelberekeningen vaak de eerste stap om vast te stellen of de bijdrage inderdaad van belang is, wie daarvoor verantwoordelijk is. Metingen vormen de tweede stap waarbij onderzocht wordt in hoeverre er werkelijk sprake is van een probleem. De afgelopen vijftien jaar is in de IWAD de lijn gevolgd die ging van oriënterende berekeningen van de depositie naar een compleet meetnet met als doel de depositie uit metingen af te leiden. In het kader van IWAD zijn de laatste drie jaar voor het eerst op systematische wijze metingen van de depositie in Nederland uitgevoerd. De verzamelde meetgegevens maken een goede beoordeling van de kwaliteit van modelberekeningen mogelijk. In deze paragraaf wordt getracht de thans beschikbare resultaten in een bredere context te plaatsen, de witte plekken te identificeren en mogelijkheden voor verbetering aan te geven. Daarnaast wordt ingegaan op de mogelijkheden atmosferische depositie in de toekomst te monitoren en de mogelijkheden de atmosferische depositie in de toekomst te verminderen.

4.2 **De resultaten van de metingen**

De gemeten atmosferische depositie kan op verschillende manieren worden beoordeeld. Enerzijds kan onderzocht worden of effecten van de waargenomen niveaus kunnen worden verwacht. Het betreft hier eerder de effecten op de korte termijn dan die op de lange. Anderzijds is voor waterkwaliteitsbeheerders de vrucht in kg/jaar een belangrijke groothed. Beide kanten van de meetresultaten zullen worden besproken.

Niveaus

De waargenomen concentraties niveaus zijn, bij gebrek aan normen voor neerslag of lucht, vergeleken met de MTR waarden voor oppervlaktewater. De concentratie van zeventien verschillende pesticiden en verschillende PAK overschreidden één of meerdere keren het MTR niveau. De concentratie van tweeëntwintig verschillende pesticiden en een aantal PAK overschreed de norm voor drinkwater van 100 ng/liter. Het is niet duidelijk in hoeverre deze belasting van het oppervlaktewater ook werkelijk leidt tot effecten. De gemiddelde concentratie van stoffen in het oppervlaktewater is door allerlei processen zoals afbraak en hechting aan sediment doorgaans lager dan die in neerslag.

Berekeningen met een eenvoudig computemodel voor enkele stoffen, waarmee processen in water kunnen worden gesimuleerd, laten zien dat de gemiddelde depositieniveaus niet snel zullen leiden tot voortdurende overschrijding van het MTR niveau in oppervlaktewater. Voor een aantal pesticiden, waarvan de gehele jaardosis nog al eens in betrekkelijk korte perioden worden gebruikt, is de situatie anders. De piekbelasting die in (bron)gebieden gedurende enkelvoud maanden wordt aangetroffen zou echter in sommige watersystemen wel tot overschrijding van normen kunnen leiden.

emissies uit de glastuinbouw lijkt dit al zien Zoals eerder vermeld richt het huidige onderzoek zich echter op de landelijke schaal. De metelocaties zijn alle gelegen op zo groot mogelijke afstand van bronnen. Dichterbij bronnen kan de concentratie veel hoger zijn. In een uitgewerkt voorbeeld (Bijlage V) was de concentratie op één km afstand van een bron vijftig keer zo hoog als op tien kilometer afstand van de bron.

Vergelijking met de belasting door andere bronnen

Op landelijke schaal is de belasting van het oppervlaktewater met pesticiden vergelijkbaar met die door drift en laterale uitspoeling. Uit de metingen blijkt dat gemiddeld 0,1% van de hoeveelheid gebruikte werkwarme stof door atmosferische depositie het oppervlaktewater terecht komt (zie Bijlage IX), terwijl de belasting via de genoemde andere routes 0,22% is. Voor enkele stoffen zoals *propachlor* en *vinclozolin* is depositie naar water, met ongeveer één procent van het gebruik, zelfs hoog te noemen.

De schatting van de belasting van de bodem is erg onzeker. De uit de metingen afgeleide depositie naar bodem zou gelijk zijn aan ruwweg 0,2 tot 0,3% van het gebruik.

Er zijn echter belangrijke verschillen tussen het effect van atmosferische belasting en bijvoorbeeld drift. Voor afgelegen natuurgebieden (terrestrisch en niet-terrestrisch) is de atmosfeer de enige bron! Mogelijke effecten in deze gebieden worden dus uitsluitend veroorzaakt door atmosferische depositie van bronnen verder weg. In sommige gevallen gaat het hierbij zelfs om bronnen in het buitenland. Een ander verschil is dat de belasting door drift terechtkomt op een relatief klein wateroppervlak dicht bij de bron. De atmosferische depositie zoals die uit de metingen wordt afgeleid, komt terecht op het volledig Nederlands wateroppervlak. Drift leidt tot hoge concentratie in een klein gebied rondom de bron. De hier gemeten, grootschalige atmosferische depositie leidt tot een, relatief lage, concentratie in alle wateren in Nederland. De totale hoeveelheid materiaal die het oppervlaktewater in Nederland bereikt is echter voor beide routes van dezelfde orde van grootte.

Voor alle stoffen is de gemeten belasting door atmosferische depositie van dezelfde orde van grootte als de directe belasting en de belasting via effluents. Voor *HCB*, *PCB’s* en *pentachloorfenol* is de atmosferische route veruit de belangrijkste.

Tabel 14 Belasting van het IJsselmeergebied vanuit verschillende bronnen in het jaar 1998 in kg/ jaar (Koch et al. 2001 aangegeven met 1) vergeleken met de gemeten depositie.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>81,9</td>
<td>124</td>
<td>0,16</td>
<td>48</td>
</tr>
<tr>
<td>Fluoranteen</td>
<td>219</td>
<td>2120</td>
<td>0,936</td>
<td>560</td>
</tr>
<tr>
<td>PAK (6 van Borneff)</td>
<td>407</td>
<td>2250</td>
<td>1,35</td>
<td>880</td>
</tr>
<tr>
<td>HCB</td>
<td>0,00024</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>PCB (som van 10)</td>
<td>0</td>
<td>-</td>
<td>0,00000635</td>
<td>8,1</td>
</tr>
<tr>
<td>PCP</td>
<td>0,00143</td>
<td>-</td>
<td>0,698</td>
<td>26</td>
</tr>
</tbody>
</table>

STOWA 56
Tabel 15 Belasting van het Nederlands oppervlaktewater vanuit verschillende bronnen in het jaar 1998 in kg jaar (van Harmelen et al. 2001) vergeleken met de gemeten depositie naar heel Nederland (oppervlakte 5421 km², dat is exclusief de Waddenzee).

<table>
<thead>
<tr>
<th>Direct¹ (1999)</th>
<th>Atmosferische depositie²</th>
<th>Effluenten⁰</th>
<th>Atmosferische depositie (metingen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo[α]pyreen</td>
<td>417</td>
<td>273</td>
<td>15,6</td>
</tr>
<tr>
<td>Fluoranteen</td>
<td>1700</td>
<td>2920</td>
<td>89,8</td>
</tr>
<tr>
<td>PAK (6 van Bornell)</td>
<td>2890</td>
<td>3200</td>
<td>187</td>
</tr>
<tr>
<td>HCB</td>
<td>0,266</td>
<td>-</td>
<td>0,154</td>
</tr>
<tr>
<td>PCB (som van 10)</td>
<td>0</td>
<td>-</td>
<td>0,00075</td>
</tr>
<tr>
<td>PCB</td>
<td>1,26</td>
<td>-</td>
<td>63,3</td>
</tr>
</tbody>
</table>

Een gedeelte van de depositie op bodem zal ook via uitspoeling of afspoeling in het oppervlaktewater terecht kunnen komen. Schattingen van de bijdrage van deze *indirecte depositie* via uitspoeling van bodem zijn relatief onzeker. In de hier gepresenteerde schattingen is de bijdrage van deze indirecte belasting niet meegenomen. De bijdrage van de indirecte depositie is volgens een eerste schatting (voor het beheersgebied van ZHEW) van dezelfde orde van grootte als de directe atmosferische depositie. De waargenomen depositie zou dus verdubbeld kunnen worden door de bijdrage van de indirecte depositie.

Vergelijking met andere schattingen

In het kader van de recentelijk uitgevoerde MJP-G evaluatie zijn ook berekeningen van de belasting van het oppervlaktewater door atmosferische depositie uitgevoerd. In deze berekeningen werden de berekeningen uitgevoerd voor alle in Nederland gebruikte stoffen. Bovendien werd de emissies volgens een afwijkende procedure over het land verdeeld. Gemiddeld over alle stoffen zou 0,01% van de gebruikte hoeveelheid actieve stof door atmosferische depositie in het Nederlands oppervlaktewater terechtkomen. Dit is een veel lagere waarde dan nu blijkt uit de hier gepresenteerde metingen. De in de MJP-G berekeningen gebruikte fysisch-chemische eigenschappen zijn mogelijk niet representatief voor het middelenpakket in het huidige onderzoek. Dit verklaart waarschijnlijk het verschil tussen de huidige resultaten en de resultaten uit de MJP-G evaluatie.

In de hierboven gegeven schattingen uit de rapportages van Hoofdinspectie Milieuhygiëne worden in de Emissiemonitor voor enkele stoffen schattingen van de depositie gepresenteerd. De daar geschatte atmosferische depositie naar het Nederlands oppervlaktewater is doorgaans een factor drie tot vier hoger dan de uit de metingen voor enkele PAK afgeleide depositie.

Ontwikkelingen van de depositie in de laatste jaren en het toelatingsbeleid

Voor veel stoffen lijkt de thans gemeten depositie aanzienlijk lager dan de 10 jaar geleden geschatte depositie. De uit de metingen afgeleide depositie is doorgaans lager dan de voor het jaar 1990 met verspreidingsmodellen berekende atmosferische depositie op Nederland. Voor PAK en PCB’s is de huidige depositie respectievelijk een factor vier en een factor twee lager dan voor het jaar 1990 werd geschat. De deposities van *endosulfan, lindaaan* en trifluralin verschillen echter een factor 10 tot 50. Opvallend zijn verder lage waarden voor de depositie van *parathion-ethy1, mevinfos, pentachloorfenol, simazine, bentazon en atrazin*. In Duyzer en Vonk (2001) is uitgebreid ingegaan op deze verschillen. Één van de oorzaken van dit verschil is het sterk gedaalde verbruik van juist die stoffen die tijdens de eerste studie in de belangstelling stonden. Het gebruik van een aantal van deze stoffen is, als gevolg van beleidsmaatregelen, afgenomen. An-

STOWA 57

4.3 Vergelijking met modelberekeningen

Voor twintig stoffen, die regelmatig werden aangetroffen, zijn ook berekeningen uitgevoerd met het OPS model op basis schattingen van de emissie naar lucht. Voor ruim 40% van deze stoffen verschilren de berekende en de gemeten natte depositie minder dan een factor twee en was er een goede correlatie tussen de gemeten en berekende depositie. Dit geeft aan dat de schattingen die gemaakt zijn van de grootte van de emissie en de verdeling over het land en de berekeningen van de verspreiding door de atmosfeer redelijk goed zijn. Voor enkele stoffen (bijna 40%) werd de verdeling over het land goed voorspeld maar werd de emissie of omzettingsprocessen in de lucht over dan wel onderschat. Daardoor was de gemiddelde depositie sterk over of onderschat. De overeenkomst tussen de gemeten en berekende natte depositie verschilde tot een factor tien voor dichlobenil, DNOC en trialaat. De conclusie lijkt gerechtvaardigd dat het model in principe goed, dat wil zeggen binnen een factor twee, in staat is de concentratie en depositie van stoffen te berekenen. Voorwaarde is in ieder geval dat goede schattingen van de emissie voorhanden zijn.

De berekende depositie van fluoranteen (een gasvormige PAK) en voor benzo[a]pyreens verschilde ook aanzienlijk van de gemeten depositie. Het model onderschat de gemeten depositie van benzo[a]pyreens met een factor drie. De natte depositie van fluoranteen wordt door het model met een factor twee overschat.

In het kader van de recentelijk uitgevoerde MJP-G evaluatie zijn ook berekeningen van de belasting van het oppervlaktewater door atmosferische depositie uitgevoerd. Deze berekeningen werden uitgevoerd voor alle in Nederland gebruikte stoffen. Bovendien werd de emissies volgens een afwijkende procedure over het land verdeeld. Gemiddeld over alle stoffen zou 0,01% van de gebruikte hoeveelheid actieve stof door atmosferische depositie in het Nederlands oppervlaktewater terechtkomen. Dit is bijna een factor tien lagere waarde dan nu blijkt uit de hier gepresenteerde metingen. De in de MJP-G berekeningen gebruikte fysisch-chemische eigenschappen zijn waarschijnlijk niet representatief voor het middelenpakket in het huidige onderzoek. Dit verklaart waarschijnlijk het verschil tussen de huidige resultaten en de resultaten uit de MJP-G evaluatie.
De bron van de depositie

Modelberekeningen maken het mogelijk aan te geven welke bronnen in welke mate bijdragen aan de depositie. Op basis van het gedetailleerde bestand van emissies dat voor de huidige studie beschikbaar was, is een berekening gemaakt van de bijdrage van de verschillende brongebieden in Nederland aan de depositie. Een analyse van de bijdrage van verschillende brongebieden aan de depositie in verschillende waterbeheersgebieden laat zien dat deze bijdrage sterk samenhangt met de ligging van de bron ten opzichte van het betrokken waterkwaliteitsgebied. Er zijn grofweg twee patronen te herkennen. De hoogste depositie van dichloorvos, een stof gebruikt in kassen, treedt op in Delfland een gebied met veel kassen. Voor heel Nederland is de emissie uit dit gebied de belangrijkste bron en leidt ze tot overschrijdingen van het MTR voor oppervlaktewater in neerslag. De depositie van chloorthalonil, een veel gebruikte stof in aardappelen, is heel weer anders over het land verdeeld. De depositie is bij deze stof ook het hoogst in de specifieke aardappelgebieden in Groningen en Zeeland. In de meeste gevallen komt de grootste bijdrage echter uit de eigen provincie. De goede overeenkomst tussen de berekende en gemeten concentratie van atrazin is opnieuw een aanwijzing dat de depositie van deze, in Nederland niet toegelaten, stof veroorzaakt wordt door emissies in het buitenland. Bij de berekeningen werd er van uitgegaan dat de stof niet in Nederland wordt gebruikt.

4.4 Aanbevelingen voor het vervolg

In deze paragraaf wordt ingegaan op de noodzaak en het doel van vervolgonderzoek en de mogelijkheden de resultaten van het onderzoek in te passen in het beleid gericht op verbetering van de kwaliteit van het oppervlaktewater.

4.4.1 Aanbevelingen voor het verder onderzoek

De hier afgeleide waarden voor de depositie zijn afgeleid uit metingen op achttien stations verdeeld over het land. Daardoor ontstaat een representatief beeld van de depositie naar Nederland. Door het gebruik van metingen is de kwaliteit van de schatting van belasting relatief hoog in vergelijking tot de, in het verleden gemaakte, schattingen op basis van modelberekeningen. De onzekerheid in de berekende belasting van het oppervlaktewater werd geschat op een factor 5-10. In dit onderzoek is de depositie voor het eerst ook op basis van metingen vastgesteld. Uit een vergelijking tussen metingen en modelberekeningen blijkt dat het model in staat is de natte depositie vaak binnen een factor twee te schatten. De conclusie lijkt daarmee gerechtvaardigd dat de depositie met de huidige methoden goed kan worden vastgesteld. Verbetering van de kwaliteit kan, voor wat betreft de kwaliteit van de metingen, nog worden bereikt door:

- Verbetering van de gevoeligheid van de chemische analyse
 Een verbetering van de nauwkeurigheid kan voor een aantal stoffen nog wel worden bereikt door verhoging van de gevoeligheid van de chemische analyse voor enkele stoffen. Voor de meeste stoffen is de nauwkeurigheid echter voldoende. Voor de polaire pesticiden is de gevoeligheid te laag.

- Vergroting van de kennis over de droge depositie
 Een onzekere grootheid is de waarde van de droge depositsnelheid naar bodem, vegetatie en oppervlaktewater. De droge depositie wordt nu afgeleid uit metingen van concentratie in lucht en een schatting van de depositsnelheid. De onzekerheid in deze depositsnelheid is vrij groot en er is behoefte aan validatie van de schattingen. De aandacht voor de belasting van terrestrische ecosystemen vanuit de atmosfeer is, behalve voor verzurende stoffen, zeer
beperkt. Mede daardoor is er weinig onderzoek uitgevoerd naar de onderliggende processen en is de kennis zeer beperkt.

- Vergroting van de kennis over de indirecte depositie
 In deze studie is het belang van de indirecte depositie (afspoeling enzovoort) niet meege-
 nomen. De onzekerheid in het belang van dit proces is erg groot terwijl de bijdrage aan de
 belasting mogelijk groot is. Afhankelijk van allerlei factoren zou de afspoeling van de depo-
 sitie van verhard oppervlak groot kunnen zijn.

- Verbetering van de schatting van de depositie op de Noordzee.
 De schatting van de depositie op de Noordzee is nu geschat aan de hand van metingen
 dichtbij de Nederlands kust. Daardoor is geen rekening gehouden met het verloop van de
 concentratie van de kust naar meer open zee. Verbetering van deze schattingen is mogelijk
 door metingen ter plaatse uit te voeren. Daarnaast zou een uitgebreide modelstudie het in-
 zicht kunnen vergroten.

De kwaliteit van de modelberekeningen van de depositie van pesticiden kan los daarvan verbe-
terd te worden door verbetering in:

- Gegevens van de emissie van pesticiden in het buitenland. De op dit moment gemaakte
 schattingen zijn voornamelijk gebaseerd op gegevens over de Nederlandse landbouw. Goe-
 de gegevens over het gebruik in het buitenland ontbraken.

- De kwaliteit van fysisch chemische parameters zoals de Henry-constante en de dampspan-
 ning. Vooral voor laag vluchtige verbindingen is de onzekerheid over de dampspanning
 groot. De kennis over de omzettingsnelheid van stoffen in de atmosfeer is erg beperkt. Dit
 leidt tot grote onzekerheden over de bijdrage van de belasting met stoffen vanuit bronnen
 in het buitenland.

- Zoals hierboven al genoemd is er behoefte aan kennis over het proces van de droge deposi-
 tie en de indirecte depositie.

In het hier gepresenteerde onderzoek zijn bijzonder veel gegevens verzameld. De analyse van de
gegevens is zeer tijdrovend en heeft zich gericht op hoofdzaken. Er is zeker ruimte voor een
meer gedetailleerde, wetenschappelijke analyse van de meetgegevens. Bij een uitgebreide ana-
lyse zouden uiteraard modelberekeningen een rol kunnen spelen. Startpunt van deze activiteit
zou kunnen zijn een nadere analyse van de oorzaak van de verschillen tussen de gemeten en
berekende deposities zoals die voor enkele stoffen wordt aangetroffen.

4.4.2 Monitor van atmosferische depositie van organische verbindingen in de toekomst

De, in deze studie vastgestelde, omvang van atmosferische depositie als diffuse bron voor het
oppervlaktewater lijkt zodanig groot dat verwacht mag worden dat er behoefte blijft bestaan aan
gegevens over het belang van dit proces. Op basis van de vergelijking tussen de resultaten van
modelberekeningen en metingen lijkt de conclusie bovendien gerechtvaardigd dat geschikte
modellen beschikbaar zijn. Het blijkt daarnaast technisch goed mogelijk door metingen de de-
positie op landelijke schaal te bepalen. De kosten van het meetprogramma zijn redelijk te over-
zien.

Voor het ontwikkelen van een strategie gericht op het monitoren van depositie in de komende
jaren staan dus zowel metingen als modelberekeningen ter beschikking. Voor het ontwikkelen
van een dergelijke strategie, zijn vooral het concrete doel en de mogelijke kosten in relatie tot
beschikbare budgetten van belang. Een combinatie van modelberekeningen en metingen ligt
voor de hand. Een meetprogramma zou dan gericht kunnen zijn op het in kaart brengen van de
verdeling van de depositie over het land en het volgen van ontwikkelingen in het pakket aan
bestrijdingsmiddelen. Modellberekeningen zouden gebruikt kunnen worden om regionaal de
depositie in relatie tot emissies en de ontwikkelingen daarin in kaart te kunnen brengen.
In een recent uitgevoerde onderzoek ten behoeve van het RIZA is door TNO een strategie uit-
gewerkt gericht op de informatiebehoefte van waterkwaliteitsbeheerders (Duyzer et al. 2002).
Ook voor de informatiebehoefte op de nationale schaal kunnen drie sporen worden ondersche-
den:

– Modellberekeningen voor heel Nederland
Voorgesteld wordt berekeningsmodel in een formeel traject uit te
voeren op basis van gegevens over de emissie naar lucht. Deze gegevens kunnen worden
verkregen op basis van de Emissieregistratie. Schattingen van de emissies van pesticiden
zouden daarin kunnen worden opgenomen. Ook de uitkomsten van de berekeningen worden
opgenomen in de Emissieregistratie. Het voordeel van deze formele aanpak is dat de kwalitei-
teit van de gegevens vastligt en gehandhaafd blijft. Een resolutie van de gegevens op 5 bij 5
km schaal maakt het mogelijk voor elke waterkwaliteitsbeheerder gegevens te verzamelen.

– Meting van de depositie op landelijke schaal
Dit spoor is vooral belangrijk voor pesticiden. Doordat het middelpakket voortdurend ver-
anderd zijn metingen noodzakelijk om ontwikkelingen vast te stellen en te volgen. Daar-
naast kunnen metingen een belangrijke rol spelen om de effecten van beleid in het gebruik
in binnen- en buitenland te volgen. Ook zou het illegale gebruik kunnen worden opge-
spoord. Voor het verkrijgen van een landelijk beeld zou de inspanning beperkt kunnen blij-
ven tot enkele meetstations. De grote verschillen in de depositie over Nederland zouden
waarschijnlijk goed in beeld gebracht kunnen worden door een verdeling van vijf stations
volgens een dobbelsteen-configuratie. Daarmee zouden grote verschillen tussen
Noord/Zuid/Oost en West in kaart kunnen worden gebracht. Het is wel belangrijk op deze
stations een uitgebreid pakket stoffen met hoge gevoeligheid te monitoren en het pakket re-
gelmatig aan te passen aan de ontwikkelingen. De belasting van specifieke regio zou ge-
schat kunnen worden op basis van modellberekeningen uitgaande van gedetailleerde schat-
tingen van de emissie. Aan de hand van modellberekeningen kan in ieder geval een redelijke
schatting worden gemaakt.

– Meting van de depositie op regionale schaal
Bij behoefte aan gegevens op regionale schaal kunnen enkelvoudige meetstations worden
ingericht. Hierbij kan het middelenpakket specifiek worden vastgesteld. Aansluiting met de
landelijke meetactiviteiten maakt vergelijking van resultaten mogelijk.

Andere stoffen
Het thans afgeronde onderzoek was vooral gericht op organische verbindingen met de nadruk
op persistente verbindingen en pesticiden. Uit het onderzoek van Baart et al., (1995) kwam al
naar voren dat ook voor andere stoffen de belasting uit de atmosfeer belangrijk kan zijn. Boven-
dien zijn er recente aanwijzingen dat de atmosferische depositie van bijvoorbeeld zink hoger is
dan eerder werd verondersteld (Smolders, 2002). Ook de belasting van het oppervlaktewater
met organische verbindingen die in het huidige onderzoek niet werden betrokken zou belangrijk
kunnen zijn. Hamers (2002) toonde met behulp van bio-essays aan dat neerslag oestrogene po-
tentie kan hebben. Deze potentie bleek gerelateerd te kunnen worden aan de aanwezigheid van
organochloor bestrijdingsmiddelen. De betekenis van deze onderzoekresultaten is nog onder-
werp van nadere studie.
Ook over de grootte van de belasting van het oppervlaktewater vanuit de atmosfeer met nutriën-
ten is nog relatief weinig bekend. Het effect van de atmosferische depositie van ammoniak op
afgelegen wateren zoals vennen is inmiddels uitvoerig gedocumenteerd (Heij en Schneider,
1991). In recentelijk gerapporteerd onderzoek wordt gesuggereerd dat de belasting van estuaria
en kustwater met nutriënten vanuit de atmosfeer een belangrijk effect kan hebben (Paerl, 2002). Er wordt een invloed gesuggereerd op bekende effecten zoals algenbloei en zelfs uiteindelijk een verlies aan biodiversiteit. In hoeverre de resultaten van dit Noordamerikaans onderzoek ook in Noord-Europa van belang zijn is vooralsnog onduidelijk. Het lijkt zinvol in de nabije toekomst een inventariseringe studie uit te voeren naar het belang van de depositie van metalen, oestrogeen actieve verbindingen en nutriënten voor de kwaliteit van het oppervlaktewater.

4.4.3 Atmosferische depositie in het toelatingsbeleid

De belasting van het Nederlands oppervlaktewater via atmosferische depositie met pesticiden blijkt van dezelfde orde van grootte als de belasting via drift en laterale uitspoeling. De bijdrage van de indirecte depositie kan de belasting nog aanzienlijk verhogen. Een belangrijk verschil is wel dat alle belasting door drift plaatsvindt op een relatief klein wateroppervlak terwijl de atmosferische depositie in heel Nederland plaatsvindt. Belasting door drift zal daardoor sneller leiden tot hoge concentraties en normoverschrijding. Atmosferische depositie zorgt voor een relatief lage belasting van grote gebieden. Het gemiddelde niveau zal daardoor niet snel leiden tot normoverschrijdingen in die gebieden. Tegelijkertijd laten de metingen zien dat in concentratiegebieden, in perioden waarin de stoffen gebruikt worden, de depositie wel een factor tien hoger kan zijn. Hoewel hiernaar in de huidige studie geen onderzoek is gedaan is het duidelijk dat nog dichter bij de bron, binnen enkele kilometers van bronnen of brongebieden, de concentratie en depositie nog veel hoger zou kunnen zijn. Atmosferische depositie lijkt dus een belangrijke diffuse bron voor het oppervlaktewater. Hoge belastingen in bepaalde perioden in brongebieden leiden waarschijnlijk tot overschrijding van MTR niveaus. Gezien deze situatie lijken de argumenten aanwezig om atmosferische depositie bij het toelatingsbeleid te betrekken. Er lijken goede mogelijkheden de thans beschikbare kennis geschikt te maken als instrument voor de toelatingsbeoordeling.

Een pilotstudie naar de mogelijkheden atmosferische depositie in het toelatingsbeleid op te nemen lijkt zinvol. Onderzocht zou kunnen worden in hoeverre fysisch chemische parameters in de praktijk het transport over middenlange afstanden beïnvloeden en welke aspecten hier verder van belang zijn. Het onderzoek zou zich kunnen richten op de middenlange afstand van de min of meer directe omgeving van de bron tot honderden kilometers. Depositie in de directe omgeving van de bron is in de huidige studie niet nader onderzocht. De depositie is hier waarschijnlijk veel hoger dan op de huidige meetstations. De kans dat in de directe omgeving van bronnen, binnen enkele kilometers overschrijdingen van normconcentraties optreden en effecten optreden is veel groter dan op landelijke schaal. Het lijkt verder nuttig een aantal realistische Situationen uitgebreid door te rekenen.

Beperking van atmosferische depositie

De vraag is in hoeverre de depositie van gewasbeschermingsmiddelen beperkt zou kunnen worden. Een uitvoerige bespreking van de mogelijkheden valt buiten het bestek van deze studie. Een studie naar de mogelijkheden werd al eerder uitgevoerd door het CLM (Boland en Leendertse, 1999). Daarom wordt op deze plaats volstaan met enkele opmerkingen van algemene aard. Een belangrijk gegeven is allerlei dat de depositie vrijwel recht evenredig met de emissie naar lucht. Daarnaast laten de modelberekeningen zien dat de depositie in de verschillende waterkwaliteitsgebieden vaak gerelateerd kan worden aan emissies in de omgeving (binnen de provincie). Beperkingen in het gebruik en de emissie in Nederland leiden daardoor rechtstreeks tot vermindering van de depositie. Keuze voor stoffen met een kortere verblijftijd in lucht, bijvoorbeeld veroorzaakt door een hogere omzettingssnelheid, leidt ook tot vermindering van de depo-
sitie. Bij de toelating van pesticiden zou daarom rekening gehouden kunnen worden met de verblijftijd in lucht. Dit is echter een complexe materie waarbij veel basisgegevens ontbreken. In de directe omgeving van de bron, op een schaal van tientallen kilometers waar de depositie het hoogst is, zal bovendien het effect van een hoge omzettingssnelheid (ofwel een lage verblijftijd in lucht) relatief beperkt zijn. Het voordeel van stoffen met een hoge omzettingssnelheid treedt vooral op grotere afstanden van de bron op.
Voor een aantal, in Nederland niet langer toegelaten, stoffen spelen bronnen in het buitenland een belangrijke rol. Het in Nederland uitgevoerde beleid heeft geen invloed op de bijdrage van deze bronnen. Hier zou het internationaal toelatingsbeleid een rol moeten spelen.
5. Referenties

TNO Rapport R95/138*. Calculation of atmospheric deposition of contaminants over the North Sea.

Blootstelling aan pesticiden: Concentraties lucht, bodem, water en vegetatie door emissie uit de glastuinbouw. TNO rapport R96/313.

Bepaling pesticiden, PAK en PCB in oppervlaktewater- en grondmonsters. TNO–MEP TR 02/271.

SimpleBox 2.0: a nested multimedia fate model for evaluating the environmental fate of chemicals. RIVM report no. 719101029.

Minder bestrijdingsmiddelen de lucht in. CLM Utrecht, CLM422.

Bepaling van emissies naar water door atmosferische depositie
TNO-MEP rapport R2002/268 Apeldoorn.

Een programma om in de behoefte aan gegevens over atmosferische depositie van POP te
voorzien
TNO-MEP Rapport R98/040.

De depositie van POP in Nederland. Verslag van de voorbereidingsfase.
TNO-MEP rapport 99/397.

Bepaling van de atmosferische depositie van pesticiden, PCB's, PAK op twee locaties
aan het IJsselmeer. Eerste tussenrapport
TNO-MEP-R2000/422.

De depositie van POP in Nederland: Verslag van het eerste halfjaar van het

Atmosferische depositie van POP in Nederland: Resultaten van de metingen in het jaar 2000

Toxic potency and effects of diffuse air pollution
PhD Thesis University of Wageningen, Netherlands 90-5808-7-9-3.

Emissiemonitor
Jaarcijfers 1999 en ramingen 2000 voor emissies en afval
Rapportagereeks Doelgroepmonitoring Nummer 9, mei 2001
Hoofdinspectie Milieuhygiène, Den Haag.

Summary of Acidification Research in the Netherlands

Basic considerations about trace constituents in the atmosphere as related to the fate of
global pollutants, in Suffet, I.H., ed., Fate of pollutants in the air and water environments:
John Wiley and Sons, New York, p 7-25.

Emissies in Nederland per regio
Jaarrapport 1998 en ramingen 1999
Rapportagereeks MilieuMonitor Nummer 2, november 2001
Hoofdinspectie Milieuhygiëne, Den Haag.

Emissie-evaluatie MJP-G 2000
RIVM rapport 716601 004.

Connecting atmospheric nitrogen deposition to Coastal Eutrophication
Environmental Science and Technology (August), 323- 326A.

Prevent diffuse waterpollution

De bijdrage van atmosferische depositie aan de verontreiniging van de Nederlandse bodem en het Nederlandse oppervlaktewater
IMW-TNO rapport R 89/385 Delft.

The contribution of the input from the atmosphere to the contamination of the North Sea and the Dutch Wadden Sea, TNO report R89/349A, 1989.

Bestrijdingsmiddelen in neerslag in Zuid-Holland 1998
Rapportage van de provincie Zuid-Holland.
6. Verantwoording

Naam en adres van de opdrachtgever:
Stichting Toegepast Onderzoek Waterbeheer (STOWA), Utrecht
Provincie Noord-Holland, Haarlem
Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Rijkswaterstaat, Rijksinstituut voor Kust en Zee (RIKZ), ‘s Gravenhage
Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Rijkswaterstaat, Rijksinstituut voor Integraal Zoetwaterbeheer en Afvalwaterbehandeling (RIZA), Lelystad
Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Rijkswaterstaat, Directie IJsselmeergebied, Lelystad
Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, ‘s Gravenhage
Rijksinstituut voor Volksgezondheid en Milieu, Bilthoven
TNO Doelfinanciering LNV en V&W

Namen en functies van de projectmedewerkers:

Jan Duyzer Projectleider
Roel Plant Database ontwikkeling
Anne Wim Vonk Verwerking meetgegevens, rapportage
Albert Bleecker Modelberekeningen
Hilbrand Weststrate Monsterneming
Bert Heidema Opzet en organisatie monsterneming
Henk Verhagen Monsterneming
Andre Cinjee Monsterneming
Teun Hofman Monsterneming
Ruud Peters Leiding chemische analyse
Henry Beeltje Chemische analyse
Sasja Walraven Chemische analyse
Alex van Renesse Chemische analyse

Namen van instellingen waaraan een deel van het onderzoek is uitbesteed:

Omegaen, Amsterdam

Datum waarop, of tijdsbestek waarin, het onderzoek heeft plaatsgehad:

januari 1999 - oktober 2002

Onterechteling: [Onschrift][Onschrift] Goedgekeurd door:

J.H. Duyzer

projectleider

M.P. Keuken

afdelingshoofd

STOWA
Bijlage I Depositiesnelheid

De droge depositsnelheid van stoffen is sterk afhankelijk van meteorologische condities en de ondergrond waarop de depositie plaatsvindt. Uitwisseling naar het oppervlak vanuit de atmosfeer vindt eerst plaats via turbulentte bewegingen, en dicht boven het oppervlak wordt de uitwisseling geregeld door moleculaire diffusie door een laminaire laag boven dit oppervlak. Dit proces is limiterend in de uitwisseling naar het oppervlak, en verloopt verschillend voor water en bodem.

Depositie naar oppervlaktewater

Voor depositie naar water is de oplosbaarheid van een stof een belangrijke factor. Stoffen met een hoge oplosbaarheid deponeren gemakkelijk op wateroppervlakken. Opname in het water wordt dan vrijwel alleen gelimitteerd door de weerstand in de luchtlag boven dat water. Depositiesnelheden zijn dan in de orde van 0,4 centimeter per seconde. Wanneer stoffen slecht oplosbaar zijn, belemmert dat de opname in water en neemt de depositsnelheid af. Een stof als chloororthonol is slecht oplosbaar; er kan ongeveer 0,6 milligram van de stof oplossen per liter water. De Henrycoëfficiënt (H) van die stof, die benaderd kan worden door ratio van de dampdruk (P) van die stof en de oplosbaarheid (S), is hoog. De berekende depositsnelheid (V_d) van chloororthonol naar een wateroppervlak ligt in de orde van 0,1 centimeter per seconde. Deze depositsnelheid is berekend volgens Liss and Slater, (1974):

$$ Flux = V_d (C_l - \frac{H}{RT} C_w) $$

waarbij

$$ V_d = \frac{1}{\frac{1}{k_a} + \frac{H}{RT} \frac{1}{k_l}} $$

Hierin stelt k_a de uitwisselingscoëfficiënt naar lucht voor, k_l de uitwisselingscoëfficiënt naar water, R de specifieke gasconstante en T de luchttemperaturen in Kelvin.

Reëmissie

De vergelijking laat zien hoe in het Liss en Slater model rekening wordt gehouden met de concentratie van een stof in het oppervlaktewater (C_w). In sommige gevallen kan, wanneer de concentratie in het oppervlaktewater hoog is de richting van de flux omkeren en zelfs (re-)emissie uit het wateroppervlak optreden. Het kan daarbij gaan om stoffen die met neerslag in het oppervlaktewater tercht zijn gekomen of om stoffen die op andere wijze daarin zijn terechtgekomen. Om het belang van dit proces te onderzoeken werden in december 2000 in het kader van dit onderzoek monsters oppervlaktewater, gras en bodem genomen en onderzocht met behulp van dezelfde analyse methode als die voor de neerslagmonster wordt gebruikt (Beeltje, 2002). Voor die stoffen is de depositsnelheid naar wateroppervlakken gecorrigeerd voor de concentratie in het water (Tabel I.1). Daaruit blijkt bij de gevonden concentraties in oppervlaktewater een aantal stoffen waarschijnlijk eerder zal verdampen uit het oppervlaktewater dan door droge depositie zal worden opgenomen.
Een goede inschatting van het belang van deze correctie voor heel Nederland is pas mogelijk op basis van een goed overzicht van de concentratie van stoffen in het oppervlaktewater. Dat overzicht ontbreekt op dit moment. De tabel illustreert alleen dat voor 2,4-D, atrazine en hexachloorbenzeen dit effect een rol kan spelen. Voor de andere stoffen ontbreken de gegevens.

Tabel 1.1 Depositiesnelheid (in cm/s) van een aantal stoffen berekend uitgaande van een verwaarloosbare concentratie van de stof in oppervlaktewater (Vd1) en berekend rekening houdend met de aangetroffen concentratie (Vd2).

<table>
<thead>
<tr>
<th>Stof</th>
<th>Vd1</th>
<th>Vd2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>0,45</td>
<td>-210,74</td>
</tr>
<tr>
<td>atrazine</td>
<td>0,46</td>
<td>-5,16</td>
</tr>
<tr>
<td>azinfos-methyl</td>
<td>0,43</td>
<td>0,40</td>
</tr>
<tr>
<td>Bentazon</td>
<td>0,45</td>
<td>0,40</td>
</tr>
<tr>
<td>dichlornitil</td>
<td>0,49</td>
<td>0,12</td>
</tr>
<tr>
<td>hexachloorbenzeen</td>
<td>0,37</td>
<td>-51,29</td>
</tr>
<tr>
<td>MCPA</td>
<td>0,46</td>
<td>0,10</td>
</tr>
<tr>
<td>mecoprop</td>
<td>0,45</td>
<td>0,32</td>
</tr>
<tr>
<td>PCP</td>
<td>0,46</td>
<td>0,45</td>
</tr>
<tr>
<td>triallaaat</td>
<td>0,40</td>
<td>0,40</td>
</tr>
</tbody>
</table>

De depositsielheid naar bodem en vegetatie

De depositsielheid naar bodem voor de verschillende stoffen is berekend met het model SimpleBox (Van der Meent, 1993). In dit model wordt de verdeling van die stoffen tussen de componenten lucht, water, bodem en sediment berekend. Verder kan een stof gedeeltelijk gehecht aan aërosolen en gedeeltelijk in gasfase in de atmosfeer voorkomen, o.a. afhankelijk van de dampdruk van een stof en de heersende temperatuur. De depositsielheid van de aan aërosolen gebonden stoffen verschilt van de in gasfase voorkomende stof. Om die redenen wordt hier gesproken over een effectieve depositsielheid, waarin binding van een stof aan deeltjes is verdiscoteerd. Belangrijke stofeigenschappen in dit model zijn:
- K_{ow} octanol-water verdelingscoëfficiënt: maat voor de affiniteit van een stof voor vet en organisch materiaal
- oplosbaarheid in water
- dampdruk
- afbraaksnelheid van de stof in lucht, water, bodem en sediment.

Voor die stoffen, die veel in neerslag- en luchtmonsters zijn aangetroffen, is een berekening van de droge en natte depositie uitgevoerd. De depositsielheid van deze stoffen en een aantal fysische stofeigenschappen staan vermeld in Tabel 1.2.
<table>
<thead>
<tr>
<th>Stofnaam</th>
<th>MW</th>
<th>log K_{ow}</th>
<th>P</th>
<th>S</th>
<th>Omzetting in lucht</th>
<th>Vd water</th>
<th>Vd bodem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/mol</td>
<td></td>
<td>mg/L</td>
<td>%/hr</td>
<td>cm/s</td>
<td>cm/s</td>
<td></td>
</tr>
<tr>
<td>atrazin</td>
<td>215,7</td>
<td>2,6</td>
<td>0,00004</td>
<td>30</td>
<td>57</td>
<td>0,46</td>
<td>0,244</td>
</tr>
<tr>
<td>bentazon</td>
<td>240</td>
<td>2,3</td>
<td>4,6E-04</td>
<td>500</td>
<td>24</td>
<td>0,48</td>
<td>0,279</td>
</tr>
<tr>
<td>chloproprifam</td>
<td>214</td>
<td>3,4</td>
<td>1,3E-03</td>
<td>89</td>
<td>15</td>
<td>0,46</td>
<td>0,068</td>
</tr>
<tr>
<td>chlopyriphosmethyl</td>
<td>322,5</td>
<td>4,7</td>
<td>5,6E-03</td>
<td>4</td>
<td>23</td>
<td>0,44</td>
<td>0,005</td>
</tr>
<tr>
<td>chlorthalonil</td>
<td>265,9</td>
<td>3,1</td>
<td>8,1E-03</td>
<td>1</td>
<td>3,7</td>
<td>0,12</td>
<td>0,004</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>172,0</td>
<td>2,7</td>
<td>7,3E-02</td>
<td>18</td>
<td>0,07</td>
<td>0,52</td>
<td>0,006</td>
</tr>
<tr>
<td>dichlorvos</td>
<td>221</td>
<td>1,9</td>
<td>1,6E+00</td>
<td>1000</td>
<td>0,12</td>
<td>0,51</td>
<td>0,014</td>
</tr>
<tr>
<td>dimethoat</td>
<td>229,3</td>
<td>0,7</td>
<td>1,1E-03</td>
<td>2500</td>
<td>31</td>
<td>0,49</td>
<td>0,303</td>
</tr>
<tr>
<td>DNOC</td>
<td>198</td>
<td>2,4</td>
<td>8,7E-03</td>
<td>130</td>
<td>0,08</td>
<td>0,51</td>
<td>0,025</td>
</tr>
<tr>
<td>ethofumesaat</td>
<td>286</td>
<td>2,7</td>
<td>8,6E-05</td>
<td>80</td>
<td>21</td>
<td>0,46</td>
<td>0,145</td>
</tr>
<tr>
<td>fluazinam</td>
<td>465</td>
<td>5,7</td>
<td>5,1E-06</td>
<td>0,4</td>
<td>0,03</td>
<td>0,40</td>
<td>0,006</td>
</tr>
<tr>
<td>hexachlorobenzeen</td>
<td>283,8</td>
<td>5,7</td>
<td>1,5E-03</td>
<td>0</td>
<td>0,01</td>
<td>0,39</td>
<td>0,025</td>
</tr>
<tr>
<td>PCP</td>
<td>266,3</td>
<td>5,1</td>
<td>5,0E-02</td>
<td>80</td>
<td>0,21</td>
<td>0,48</td>
<td>0,007</td>
</tr>
<tr>
<td>pentachlorobenzene</td>
<td>250,3</td>
<td>5,2</td>
<td>1,3E-01</td>
<td>1</td>
<td>0,02</td>
<td>0,12</td>
<td>0,001</td>
</tr>
<tr>
<td>pirimiphos-methyl</td>
<td>305</td>
<td>1,2</td>
<td>1,5E-02</td>
<td>305</td>
<td>62</td>
<td>0,45</td>
<td>0,022</td>
</tr>
<tr>
<td>procymidon</td>
<td>284,1</td>
<td>3,1</td>
<td>1,8E-02</td>
<td>5</td>
<td>3</td>
<td>0,48</td>
<td>0,005</td>
</tr>
<tr>
<td>propachlor</td>
<td>212</td>
<td>1,8</td>
<td>3,1E-02</td>
<td>613</td>
<td>8,7</td>
<td>0,47</td>
<td>0,030</td>
</tr>
<tr>
<td>terbutylazine</td>
<td>229,7</td>
<td>3,2</td>
<td>1,5E-04</td>
<td>9</td>
<td>3,7</td>
<td>0,49</td>
<td>0,060</td>
</tr>
<tr>
<td>toclofosmethyl</td>
<td>301,1</td>
<td>4,6</td>
<td>5,7E-02</td>
<td>0</td>
<td>24</td>
<td>0,12</td>
<td>0,001</td>
</tr>
<tr>
<td>triallaat</td>
<td>340,7</td>
<td>4,3</td>
<td>1,6E-02</td>
<td>4</td>
<td>13</td>
<td>0,42</td>
<td>0,004</td>
</tr>
<tr>
<td>trifuralin</td>
<td>335,5</td>
<td>5,3</td>
<td>1,4E-02</td>
<td>1</td>
<td>9</td>
<td>0,44</td>
<td>0,003</td>
</tr>
<tr>
<td>vinclozolin</td>
<td>286,1</td>
<td>3,0</td>
<td>1,6E-05</td>
<td>1000</td>
<td>12,86</td>
<td>0,48</td>
<td>0,134</td>
</tr>
</tbody>
</table>
Bijlage II Concentraties in neerslag en in lucht

In deze bijlage staan de overzichten van concentraties van pesticiden, PAK’s en PCB’s, zoals ze zijn aangetroffen in neerslag en luchtmotoren. Gegeven worden de jaargemiddelde concentratie over alle monsters op alle meetlocaties, het percentage van de monsters waarin de stof is aangetroffen en de gemiddelde concentratie van alleen die monsters waarin de stof is aangetroffen. De gegevens voor de jaren 2000 en 2001 staan in aparte kolommen vermeld.

Concentraties in lucht

Tabel II.1 Overzicht van het voorkomen van pesticiden in luchtmotoren in Nederland voor de jaren 2000 en 2001. Naast de gemiddelde concentratie over alle monsters is ook het gemiddelde van de monsters waarin de stof is aangetroffen gegeven (- deze stof is niet meer bepaald, 0: de stof is wel bepaald, maar niet aangetroffen).

<table>
<thead>
<tr>
<th>Stof</th>
<th>Aange-</th>
<th>Aange-</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>toond</td>
<td>toond</td>
<td>Concentratie</td>
<td>Concentratie</td>
<td>> nul 2000</td>
<td>> nul 2001</td>
</tr>
<tr>
<td></td>
<td>in lucht</td>
<td>2001</td>
<td>(ng/m³)</td>
<td>2001</td>
<td>(ng/m³)</td>
<td>(ng/m³)</td>
</tr>
<tr>
<td>2,4-D</td>
<td>0</td>
<td>0</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>aldrin</td>
<td>0</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>atrazin</td>
<td>3</td>
<td>1</td>
<td>0,001</td>
<td>0,0002</td>
<td>0,05</td>
<td>0,02</td>
</tr>
<tr>
<td>bentazon</td>
<td>1</td>
<td>11</td>
<td>0,002</td>
<td>0,01</td>
<td>0,15</td>
<td>0,13</td>
</tr>
<tr>
<td>bitertanol</td>
<td>3</td>
<td>-</td>
<td>0,13</td>
<td>-</td>
<td>4,43</td>
<td>-</td>
</tr>
<tr>
<td>captan</td>
<td>3</td>
<td>12</td>
<td>0,02</td>
<td>0,14</td>
<td>0,76</td>
<td>1,19</td>
</tr>
<tr>
<td>chloordervinfos</td>
<td>2</td>
<td>1</td>
<td>0,002</td>
<td>0,001</td>
<td>0,08</td>
<td>0,09</td>
</tr>
<tr>
<td>chloroprofam</td>
<td>48</td>
<td>46</td>
<td>0,85</td>
<td>0,41</td>
<td>1,76</td>
<td>0,91</td>
</tr>
<tr>
<td>chloorpyporphos-methyl</td>
<td>19</td>
<td>14</td>
<td>0,002</td>
<td>0,001</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>chlorothalonil³</td>
<td>51</td>
<td>31</td>
<td>0,38</td>
<td>0,24</td>
<td>0,74</td>
<td>0,77</td>
</tr>
<tr>
<td>chloridazon (pyrazon)</td>
<td>2</td>
<td>-</td>
<td>0,003</td>
<td>-</td>
<td>0,17</td>
<td>-</td>
</tr>
<tr>
<td>deltametrin</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>demeton-S-methyl</td>
<td>11</td>
<td>-</td>
<td>0,02</td>
<td>-</td>
<td>0,18</td>
<td>-</td>
</tr>
<tr>
<td>diazinon</td>
<td>1</td>
<td>0</td>
<td>0,001</td>
<td>0,00</td>
<td>0,06</td>
<td>0,00</td>
</tr>
<tr>
<td>dichlorbenil</td>
<td>99</td>
<td>96</td>
<td>1,57</td>
<td>0,99</td>
<td>1,59</td>
<td>1,04</td>
</tr>
<tr>
<td>dichloroeros</td>
<td>1</td>
<td>6</td>
<td>0,021</td>
<td>0,02</td>
<td>2,37</td>
<td>0,41</td>
</tr>
<tr>
<td>dicofol</td>
<td>0</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>dimethoat</td>
<td>2</td>
<td>6</td>
<td>0,001</td>
<td>0,01</td>
<td>0,03</td>
<td>0,11</td>
</tr>
<tr>
<td>dinisofoton</td>
<td>0</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>DNOC</td>
<td>28</td>
<td>37</td>
<td>0,37</td>
<td>0,35</td>
<td>1,33</td>
<td>1,0</td>
</tr>
<tr>
<td>endosulfan I</td>
<td>1</td>
<td>2</td>
<td>0,003</td>
<td>0,01</td>
<td>0,21</td>
<td>0,29</td>
</tr>
<tr>
<td>endosulfan II</td>
<td>0,4</td>
<td>1</td>
<td>0,002</td>
<td>0,002</td>
<td>0,45</td>
<td>0,25</td>
</tr>
<tr>
<td>endrin</td>
<td>6</td>
<td>-</td>
<td>0,01</td>
<td>-</td>
<td>0,15</td>
<td>-</td>
</tr>
<tr>
<td>epoxiconanol</td>
<td>6</td>
<td>-</td>
<td>0,005</td>
<td>-</td>
<td>0,08</td>
<td>-</td>
</tr>
<tr>
<td>ethofumesanant</td>
<td>8</td>
<td>25</td>
<td>0,001</td>
<td>0,06</td>
<td>0,01</td>
<td>0,24</td>
</tr>
<tr>
<td>parathion-ethyl</td>
<td>0,4</td>
<td>1</td>
<td>0,000</td>
<td>0,0004</td>
<td>0,01</td>
<td>0,04</td>
</tr>
<tr>
<td>fenitrothion</td>
<td>0</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>fenithion</td>
<td>0</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>fluazinam</td>
<td>28</td>
<td>23</td>
<td>0,04</td>
<td>0,03</td>
<td>0,13</td>
<td>0,14</td>
</tr>
<tr>
<td>fluoroxyppyr²</td>
<td>11</td>
<td>13</td>
<td>0,05</td>
<td>0,04</td>
<td>0,42</td>
<td>0,29</td>
</tr>
<tr>
<td>fosfamidon</td>
<td>0</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>heptachloro</td>
<td>0</td>
<td>0,4</td>
<td>0,00</td>
<td>0,002</td>
<td>0,00</td>
<td>0,47</td>
</tr>
<tr>
<td>heptachloro epoxide</td>
<td>51</td>
<td>-</td>
<td>0,01</td>
<td>-</td>
<td>0,01</td>
<td>-</td>
</tr>
<tr>
<td>heptanois</td>
<td>0</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>Stof</td>
<td>Aange-</td>
<td>Aange-</td>
<td>Gemiddelde</td>
<td>Gemiddelde</td>
<td>Gemiddelde</td>
<td>Gemiddelde</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>toond</td>
<td>toond</td>
<td>Concentratie</td>
<td>Concentratie</td>
<td>Concentratie</td>
<td>Concentratie</td>
</tr>
<tr>
<td></td>
<td>2000 (%)</td>
<td>2001 (%)</td>
<td>(ng/m³)</td>
<td>(ng/m³)</td>
<td>(ng/m³) > nul 2000</td>
<td>(ng/m³) > nul 2001</td>
</tr>
<tr>
<td>hexachloor-1,3-butadieen</td>
<td>6</td>
<td>-</td>
<td>0,002</td>
<td>-</td>
<td>0,04</td>
<td>-</td>
</tr>
<tr>
<td>hexachloorbenezene</td>
<td>61</td>
<td>30</td>
<td>0,003</td>
<td>0,003</td>
<td>0,004</td>
<td>0,01</td>
</tr>
<tr>
<td>isoxaflutole</td>
<td>6</td>
<td>-</td>
<td>0,02</td>
<td>-</td>
<td>0,28</td>
<td>-</td>
</tr>
<tr>
<td>kresoxim-methyl³</td>
<td>19</td>
<td>15</td>
<td>0,01</td>
<td>0,01</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>lindan</td>
<td>12</td>
<td>3</td>
<td>0,04</td>
<td>0,01</td>
<td>0,34</td>
<td>0,36</td>
</tr>
<tr>
<td>malathion</td>
<td>0,4</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
<td>0,03</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>3</td>
<td>1</td>
<td>0,001</td>
<td>0,002</td>
<td>0,05</td>
<td>0,21</td>
</tr>
<tr>
<td>mecoprop</td>
<td>1</td>
<td>2</td>
<td>0,000</td>
<td>0,003</td>
<td>0,01</td>
<td>0,12</td>
</tr>
<tr>
<td>metamitron</td>
<td>0</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>methiocarb</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,001</td>
<td>0,00</td>
<td>0,1</td>
</tr>
<tr>
<td>methomyl</td>
<td>0</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>parathion-methyl</td>
<td>0</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>metolachloor</td>
<td>6</td>
<td>4</td>
<td>0,02</td>
<td>0,003</td>
<td>0,30</td>
<td>0,07</td>
</tr>
<tr>
<td>mevinfos</td>
<td>8</td>
<td>4</td>
<td>0,004</td>
<td>0,01</td>
<td>0,06</td>
<td>0,15</td>
</tr>
<tr>
<td>o,p'-DDD³</td>
<td>5</td>
<td>2</td>
<td>0,01</td>
<td>0,0004</td>
<td>0,12</td>
<td>0,02</td>
</tr>
<tr>
<td>o,p'-DDE</td>
<td>6</td>
<td>-</td>
<td>0,004</td>
<td>-</td>
<td>0,07</td>
<td>-</td>
</tr>
<tr>
<td>p,p'-DDT²</td>
<td>0</td>
<td>0 (0,5)</td>
<td>0,00</td>
<td>0 (0,0002)</td>
<td>0,00</td>
<td>0 (0,04)</td>
</tr>
<tr>
<td>PCP</td>
<td>84</td>
<td>74</td>
<td>0,06</td>
<td>0,05</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>pentachloorbenezee²</td>
<td>8</td>
<td>21</td>
<td>0,002</td>
<td>0,001</td>
<td>0,03</td>
<td>0,01</td>
</tr>
<tr>
<td>pirimicarb</td>
<td>4</td>
<td>2</td>
<td>0,001</td>
<td>0,001</td>
<td>0,02</td>
<td>0,05</td>
</tr>
<tr>
<td>pirimifos-methyl</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>0,94</td>
<td>-</td>
<td>7,89</td>
</tr>
<tr>
<td>prochloraz</td>
<td>0,4</td>
<td>0,5</td>
<td>0,000</td>
<td>0,001</td>
<td>0,01</td>
<td>0,18</td>
</tr>
<tr>
<td>procymidon</td>
<td>40</td>
<td>12</td>
<td>0,03</td>
<td>0,01</td>
<td>0,08</td>
<td>0,10</td>
</tr>
<tr>
<td>propachlor</td>
<td>30</td>
<td>21</td>
<td>0,40</td>
<td>0,18</td>
<td>1,33</td>
<td>0,87</td>
</tr>
<tr>
<td>propoxur</td>
<td>0,4</td>
<td>0</td>
<td>0,001</td>
<td>0,00</td>
<td>0,13</td>
<td>0,00</td>
</tr>
<tr>
<td>pyrazofos</td>
<td>8</td>
<td>2</td>
<td>0,01</td>
<td>0,001</td>
<td>0,09</td>
<td>0,04</td>
</tr>
<tr>
<td>simazin</td>
<td>3</td>
<td>2</td>
<td>0,01</td>
<td>0,01</td>
<td>0,23</td>
<td>0,28</td>
</tr>
<tr>
<td>telodrin</td>
<td>9</td>
<td>-</td>
<td>0,001</td>
<td>-</td>
<td>0,02</td>
<td>-</td>
</tr>
<tr>
<td>terbutylazine³</td>
<td>3</td>
<td>8</td>
<td>0,001</td>
<td>0,057</td>
<td>0,03</td>
<td>0,75</td>
</tr>
<tr>
<td>tetрабromoisofenol A³</td>
<td>41</td>
<td>31</td>
<td>0,0001</td>
<td>0,002</td>
<td>0,0001</td>
<td>0,002</td>
</tr>
<tr>
<td>tolclofos-methyl</td>
<td>16</td>
<td>18</td>
<td>0,08</td>
<td>0,06</td>
<td>0,50</td>
<td>0,36</td>
</tr>
<tr>
<td>triadimenol</td>
<td>0</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
</tr>
<tr>
<td>triallaat</td>
<td>75</td>
<td>58</td>
<td>0,4</td>
<td>0,21</td>
<td>0,58</td>
<td>0,36</td>
</tr>
<tr>
<td>triazofos</td>
<td>3</td>
<td>-</td>
<td>0,002</td>
<td>-</td>
<td>0,07</td>
<td>-</td>
</tr>
<tr>
<td>trifluralin</td>
<td>82</td>
<td>91</td>
<td>0,17</td>
<td>0,25</td>
<td>0,21</td>
<td>0,27</td>
</tr>
<tr>
<td>vinclozolin²</td>
<td>59</td>
<td>42</td>
<td>0,11</td>
<td>0,23</td>
<td>0,19</td>
<td>0,55</td>
</tr>
</tbody>
</table>

¹ Stoffen die in 2000 op vier locaties zijn bepaald en in 2001 op alle locaties.
² Stoffen die in het jaar 2001 niet meer zijn bepaald.
Tabel II.2 Overzicht van het voorkomen van PAK in luchtmonsters in Nederland voor de jaren 2000 en 2001. Naast de gemiddelde concentratie over alle monsters is ook het gemiddelde van alleen die monsters, waarin de stof is aangetroffen, gegeven.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Aange-</th>
<th>Aange-</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>toond</td>
<td>toond</td>
<td>Concentratie</td>
<td>Concentratie</td>
<td>Concentratie</td>
<td>Concentratie</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>2001</td>
<td>(ng/m³)</td>
<td>2000</td>
<td>2001</td>
<td>> nul 2000</td>
</tr>
<tr>
<td></td>
<td>(%)</td>
<td>(%)</td>
<td>(ng/m³)</td>
<td>(ng/m³)</td>
<td>(ng/m³)</td>
<td>(ng/m³)</td>
</tr>
<tr>
<td>acenafiene</td>
<td>100</td>
<td>96</td>
<td>2,44</td>
<td>1,65</td>
<td>2,44</td>
<td>1,73</td>
</tr>
<tr>
<td>acenafyleen</td>
<td>59</td>
<td>52</td>
<td>0,14</td>
<td>0,12</td>
<td>0,23</td>
<td>0,24</td>
</tr>
<tr>
<td>antraceen</td>
<td>95</td>
<td>64</td>
<td>0,31</td>
<td>0,10</td>
<td>0,33</td>
<td>0,16</td>
</tr>
<tr>
<td>benzo[a]antraceen</td>
<td>78</td>
<td>32</td>
<td>0,03</td>
<td>0,01</td>
<td>0,04</td>
<td>0,03</td>
</tr>
<tr>
<td>benzo[a]pyreene</td>
<td>84</td>
<td>74</td>
<td>0,04</td>
<td>0,03</td>
<td>0,05</td>
<td>0,04</td>
</tr>
<tr>
<td>benzo[b]fluorantene</td>
<td>90</td>
<td>91</td>
<td>0,12</td>
<td>0,12</td>
<td>0,13</td>
<td>0,13</td>
</tr>
<tr>
<td>benzo[g,h,i]pyreene</td>
<td>94</td>
<td>86</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td>0,05</td>
</tr>
<tr>
<td>benzo[k]fluorantene</td>
<td>90</td>
<td>92</td>
<td>0,07</td>
<td>0,08</td>
<td>0,08</td>
<td>0,09</td>
</tr>
<tr>
<td>chryseene</td>
<td>80</td>
<td>34</td>
<td>0,14</td>
<td>0,04</td>
<td>0,17</td>
<td>0,11</td>
</tr>
<tr>
<td>dibenz[a,h]antraceen</td>
<td>75</td>
<td>42</td>
<td>0,004</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>fenantrene</td>
<td>100</td>
<td>98</td>
<td>1,62</td>
<td>1,46</td>
<td>1,65</td>
<td>1,49</td>
</tr>
<tr>
<td>fluorantene</td>
<td>98</td>
<td>98</td>
<td>3,86</td>
<td>3,00</td>
<td>3,86</td>
<td>3,10</td>
</tr>
<tr>
<td>fluorene</td>
<td>100</td>
<td>97</td>
<td>8,36</td>
<td>6,12</td>
<td>8,36</td>
<td>6,12</td>
</tr>
<tr>
<td>indeno[1,2,3-cd]pyreene</td>
<td>88</td>
<td>76</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
<td>0,06</td>
</tr>
<tr>
<td>naftalene</td>
<td>100</td>
<td>99</td>
<td>12,05</td>
<td>11,62</td>
<td>12,05</td>
<td>11,75</td>
</tr>
<tr>
<td>pyreene</td>
<td>95</td>
<td>93</td>
<td>0,77</td>
<td>0,71</td>
<td>0,81</td>
<td>0,76</td>
</tr>
</tbody>
</table>

Tabel II.3 Overzicht van het voorkomen van PCB’s in luchtmonsters in Nederland voor de jaren 2000 en 2001. Naast de gemiddelde concentratie over alle monsters is ook het gemiddelde van alleen die monsters, waarin de stof is aangetroffen, gegeven (0: de stof is wel bepaald, maar niet aangetroffen).

<table>
<thead>
<tr>
<th>Stof</th>
<th>Aange-</th>
<th>Aange-</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>toond</td>
<td>toond</td>
<td>Concentratie</td>
<td>Concentratie</td>
<td>Concentratie</td>
<td>Concentratie</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>2001</td>
<td>(ng/m³)</td>
<td>2000</td>
<td>2001</td>
<td>> nul 2000</td>
</tr>
<tr>
<td></td>
<td>(%)</td>
<td>(%)</td>
<td>(ng/m³)</td>
<td>(ng/m³)</td>
<td>(ng/m³)</td>
<td>(ng/m³)</td>
</tr>
<tr>
<td>PCB-101</td>
<td>51</td>
<td>27</td>
<td>0,0024</td>
<td>0,004</td>
<td>0,005</td>
<td>0,014</td>
</tr>
<tr>
<td>PCB-118</td>
<td>4</td>
<td>6</td>
<td>0,0001</td>
<td>0,0003</td>
<td>0,002</td>
<td>0,005</td>
</tr>
<tr>
<td>PCB-138</td>
<td>18</td>
<td>3</td>
<td>0,0004</td>
<td>0,0001</td>
<td>0,002</td>
<td>0,004</td>
</tr>
<tr>
<td>PCB-153</td>
<td>28</td>
<td>3</td>
<td>0,0005</td>
<td>0,000003</td>
<td>0,002</td>
<td>0,001</td>
</tr>
<tr>
<td>PCB-180</td>
<td>11</td>
<td>0</td>
<td>0,0003</td>
<td>0</td>
<td>0,003</td>
<td>0,000</td>
</tr>
<tr>
<td>PCB-20</td>
<td>18</td>
<td>16</td>
<td>0,0070</td>
<td>0,004</td>
<td>0,038</td>
<td>0,023</td>
</tr>
<tr>
<td>PCB-28</td>
<td>18</td>
<td>9</td>
<td>0,0052</td>
<td>0,002</td>
<td>0,028</td>
<td>0,022</td>
</tr>
<tr>
<td>PCB-35</td>
<td>2</td>
<td>3</td>
<td>0,0004</td>
<td>0,001</td>
<td>0,023</td>
<td>0,029</td>
</tr>
<tr>
<td>PCB-52</td>
<td>37</td>
<td>29</td>
<td>0,0047</td>
<td>0,006</td>
<td>0,013</td>
<td>0,021</td>
</tr>
<tr>
<td>PCB-8</td>
<td>32</td>
<td>12</td>
<td>0,0044</td>
<td>0,003</td>
<td>0,013</td>
<td>0,021</td>
</tr>
</tbody>
</table>
Concentraties in neerslag

Tabel II.4 Overzicht van het voorkomen van pesticiden in neerslagmonsters in Nederland voor de jaren 2000 en 2001. Naast de gemiddelde concentratie over alle monsters is ook het gemiddelde van alleen die monsters, waarin de stof is aangetroffen, gegeven (- deze stof is niet meer bepaald, 0: de stof is wel bepaald, maar niet aangetroffen).

<table>
<thead>
<tr>
<th>Stof</th>
<th>Aange-</th>
<th>Aange-</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>toond in</td>
<td>toond in</td>
<td>Concentratie</td>
<td>Concentratie</td>
<td>Concentratie</td>
<td>Concentratie</td>
</tr>
<tr>
<td></td>
<td>neerslag</td>
<td>neerslag</td>
<td>(ng/l) 2000</td>
<td>(ng/l) 2001</td>
<td>> nul 2000</td>
<td>> nul 2001</td>
</tr>
<tr>
<td>2,4-D</td>
<td>9</td>
<td>31</td>
<td>0,8</td>
<td>1,9</td>
<td>8,0</td>
<td>6,2</td>
</tr>
<tr>
<td>aldrin</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>atrazin</td>
<td>23</td>
<td>25</td>
<td>12,1</td>
<td>16,5</td>
<td>52,4</td>
<td>65,9</td>
</tr>
<tr>
<td>bentazon</td>
<td>5</td>
<td>11</td>
<td>0,4</td>
<td>0,6</td>
<td>7,5</td>
<td>5,4</td>
</tr>
<tr>
<td>bitertanol</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>captan</td>
<td>12</td>
<td>5</td>
<td>4,8</td>
<td>9,0</td>
<td>41,0</td>
<td>171,4</td>
</tr>
<tr>
<td>chloorefeninfos</td>
<td>1</td>
<td>1</td>
<td>0,1</td>
<td>0,2</td>
<td>9,4</td>
<td>26,5</td>
</tr>
<tr>
<td>chloropropam</td>
<td>90</td>
<td>85</td>
<td>116,7</td>
<td>59,6</td>
<td>130,3</td>
<td>70,4</td>
</tr>
<tr>
<td>chlooryphros-methyl</td>
<td>43</td>
<td>38</td>
<td>0,4</td>
<td>0,2</td>
<td>0,9</td>
<td>0,4</td>
</tr>
<tr>
<td>chloethalonic³</td>
<td>69</td>
<td>54</td>
<td>20,0</td>
<td>14,8</td>
<td>28,9</td>
<td>27,5</td>
</tr>
<tr>
<td>chloridazon (pyrazon)</td>
<td>2</td>
<td>-</td>
<td>0,4</td>
<td>-</td>
<td>23,0</td>
<td>-</td>
</tr>
<tr>
<td>deltametrin</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>demetone-5-methyl</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>diazinon</td>
<td>3</td>
<td>4</td>
<td>0,5</td>
<td>0,3</td>
<td>18,0</td>
<td>7,2</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>99</td>
<td>89</td>
<td>15,9</td>
<td>10,6</td>
<td>16,0</td>
<td>12,0</td>
</tr>
<tr>
<td>dichloovos</td>
<td>21</td>
<td>29</td>
<td>3,8</td>
<td>3,4</td>
<td>18,4</td>
<td>12,0</td>
</tr>
<tr>
<td>dicofol</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>dimethoant</td>
<td>4</td>
<td>0,4</td>
<td>2,8</td>
<td>0,1</td>
<td>70,7</td>
<td>18,9</td>
</tr>
<tr>
<td>disulfoton</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>DNOC</td>
<td>99</td>
<td>98</td>
<td>1061,1</td>
<td>462,6</td>
<td>1075,1</td>
<td>470,9</td>
</tr>
<tr>
<td>endosulfan I</td>
<td>0,4</td>
<td>0,4</td>
<td>0,1</td>
<td>0,2</td>
<td>20,2</td>
<td>49,0</td>
</tr>
<tr>
<td>endosulfan II</td>
<td>5</td>
<td>0,4</td>
<td>1,5</td>
<td>0,0</td>
<td>31,6</td>
<td>9,0</td>
</tr>
<tr>
<td>endrin</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>epoxiconazo</td>
<td>11</td>
<td>-</td>
<td>3,7</td>
<td>-</td>
<td>34,9</td>
<td>-</td>
</tr>
<tr>
<td>ethofumesate¹</td>
<td>18</td>
<td>21</td>
<td>6,0</td>
<td>9,3</td>
<td>33,2</td>
<td>43,9</td>
</tr>
<tr>
<td>parathion-ethyl</td>
<td>2</td>
<td>0</td>
<td>0,2</td>
<td>0,0</td>
<td>7,5</td>
<td>0,0</td>
</tr>
<tr>
<td>fenuronthion</td>
<td>1</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>3,5</td>
<td>-</td>
</tr>
<tr>
<td>fenthon</td>
<td>3</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>1,0</td>
<td>-</td>
</tr>
<tr>
<td>fluazinam</td>
<td>45</td>
<td>35</td>
<td>8,9</td>
<td>15,1</td>
<td>19,8</td>
<td>43,6</td>
</tr>
<tr>
<td>fluroxypyr³</td>
<td>13</td>
<td>0 (2)</td>
<td>4,5</td>
<td>0 (0,2)</td>
<td>35,2</td>
<td>0 (9,7)</td>
</tr>
<tr>
<td>fosfamidon</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>heptachloor</td>
<td>0</td>
<td>0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>heptachloor epoxide</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>heptenofos</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>hexachloor-1,3-butadien</td>
<td>3</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,3</td>
<td>-</td>
</tr>
<tr>
<td>hexachloorbenzenen</td>
<td>97</td>
<td>71</td>
<td>0,4</td>
<td>0,3</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>isoxaflutole</td>
<td>3</td>
<td>-</td>
<td>0,4</td>
<td>-</td>
<td>14,2</td>
<td>-</td>
</tr>
<tr>
<td>kresoxim-methyl¹</td>
<td>31</td>
<td>44</td>
<td>6,3</td>
<td>8,3</td>
<td>20,3</td>
<td>18,8</td>
</tr>
<tr>
<td>lindan</td>
<td>27</td>
<td>31</td>
<td>14,3</td>
<td>10,9</td>
<td>53,1</td>
<td>35,4</td>
</tr>
<tr>
<td>malathion</td>
<td>0,4</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>2,7</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>64</td>
<td>58</td>
<td>9,7</td>
<td>6,1</td>
<td>15,1</td>
<td>10,5</td>
</tr>
<tr>
<td>mecoprop</td>
<td>47</td>
<td>36</td>
<td>7,3</td>
<td>5,6</td>
<td>15,7</td>
<td>15,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stof</th>
<th>Aange-</th>
<th>Aange-</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
<th>Gemiddelde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>toonde in</td>
<td>toonde in</td>
<td>Concentratie</td>
<td>Concentratie</td>
<td>Concentratie</td>
<td>Concentratie</td>
</tr>
<tr>
<td></td>
<td>neerslag 2000 (%)</td>
<td>neerslag 2001 (%)</td>
<td>(ng/l)</td>
<td>2001 (ng/l)</td>
<td>> nul 2000 (ng/l)</td>
<td>> nul 2001 (ng/l)</td>
</tr>
<tr>
<td>metamitron</td>
<td>5</td>
<td>-</td>
<td>0,3</td>
<td>-</td>
<td>5,5</td>
<td>-</td>
</tr>
<tr>
<td>methiocarb</td>
<td>2</td>
<td>10</td>
<td>0,0</td>
<td>3,2</td>
<td>1,7</td>
<td>32,8</td>
</tr>
<tr>
<td>methyln</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>parathion-methyl</td>
<td>1</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>2,5</td>
<td>-</td>
</tr>
<tr>
<td>metolachlor</td>
<td>24</td>
<td>18</td>
<td>8,8</td>
<td>2,8</td>
<td>36,9</td>
<td>15,2</td>
</tr>
<tr>
<td>mevinfos</td>
<td>2</td>
<td>4</td>
<td>0,2</td>
<td>0,1</td>
<td>9,3</td>
<td>3,4</td>
</tr>
<tr>
<td>o.p'-DDD³</td>
<td>46</td>
<td>10</td>
<td>3,2</td>
<td>0,28</td>
<td>7,0</td>
<td>3,0</td>
</tr>
<tr>
<td>o.p'-DDE</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>o.p'-DDT³</td>
<td>0</td>
<td>0 (1)</td>
<td>0,0</td>
<td>0 (0,1)</td>
<td>0,0</td>
<td>0 (10,8)</td>
</tr>
<tr>
<td>PCP</td>
<td>99</td>
<td>97</td>
<td>7,9</td>
<td>4,4</td>
<td>8,0</td>
<td>4,5</td>
</tr>
<tr>
<td>pentachlorobenzene⁴</td>
<td>82</td>
<td>79</td>
<td>0,2</td>
<td>0,2</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>pirimicarb</td>
<td>1</td>
<td>5</td>
<td>0,1</td>
<td>0,3</td>
<td>6,6</td>
<td>5,5</td>
</tr>
<tr>
<td>pirimifos-methyl</td>
<td>-</td>
<td>4</td>
<td>10,3</td>
<td>-</td>
<td>293,9</td>
<td></td>
</tr>
<tr>
<td>prochloraz</td>
<td>1</td>
<td>1</td>
<td>1,2</td>
<td>1,1</td>
<td>88,4</td>
<td>86,4</td>
</tr>
<tr>
<td>procymidone</td>
<td>67</td>
<td>56</td>
<td>8,5</td>
<td>4,0</td>
<td>12,6</td>
<td>7,1</td>
</tr>
<tr>
<td>propachlor</td>
<td>50</td>
<td>50</td>
<td>103,9</td>
<td>68,4</td>
<td>205,9</td>
<td>138,0</td>
</tr>
<tr>
<td>propoxur</td>
<td>14</td>
<td>11</td>
<td>1,4</td>
<td>0,6</td>
<td>10,1</td>
<td>5,8</td>
</tr>
<tr>
<td>pyrazosf</td>
<td>3</td>
<td>0</td>
<td>1,5</td>
<td>0,0</td>
<td>50,4</td>
<td>0,0</td>
</tr>
<tr>
<td>simazin</td>
<td>3</td>
<td>1</td>
<td>0,8</td>
<td>0,5</td>
<td>29,8</td>
<td>40,7</td>
</tr>
<tr>
<td>telodrin</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>terbutylazine⁴</td>
<td>36</td>
<td>39</td>
<td>9,9</td>
<td>16,0</td>
<td>27,5</td>
<td>41,7</td>
</tr>
<tr>
<td>tetrabromobisfenol A³</td>
<td>41</td>
<td>69</td>
<td>0,2</td>
<td>2,9</td>
<td>0,4</td>
<td>4,1</td>
</tr>
<tr>
<td>toclofos-methyl</td>
<td>8</td>
<td>9</td>
<td>2,2</td>
<td>2,2</td>
<td>28,7</td>
<td>25,2</td>
</tr>
<tr>
<td>triadimenol</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>triallaat</td>
<td>77</td>
<td>58</td>
<td>20,8</td>
<td>4,4</td>
<td>26,8</td>
<td>7,5</td>
</tr>
<tr>
<td>triazofos</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>trifluralin</td>
<td>73</td>
<td>76</td>
<td>2,2</td>
<td>3,7</td>
<td>3,0</td>
<td>4,8</td>
</tr>
<tr>
<td>vinclozolin⁵</td>
<td>85</td>
<td>75</td>
<td>17,2</td>
<td>15,6</td>
<td>20,4</td>
<td>20,8</td>
</tr>
</tbody>
</table>

¹ Stoffen die in 2000 op vier locaties zijn bepaald en in 2001 op alle locaties.
⁴ Stoffen die in het jaar 2001 niet meer zijn bepaald.

Tabel II.5 Overzicht van het voorkomen van PAK in neerslagmonster in Nederland voor de jaren 2000 en 2001. Naast de gemiddelde concentratie over alle monsters is ook het gemiddelde van alleen die monsters, waarin de stof is aangetroffen, gegeven.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fluoreen</td>
<td>98</td>
<td>99</td>
<td>17,5</td>
<td>12,2</td>
<td>17,8</td>
<td>12,4</td>
</tr>
<tr>
<td>indeno(1,2,3-cd)pyreene</td>
<td>92</td>
<td>95</td>
<td>15,7</td>
<td>10,6</td>
<td>17,1</td>
<td>11,1</td>
</tr>
<tr>
<td>naftalene</td>
<td>100</td>
<td>100</td>
<td>60,3</td>
<td>40,5</td>
<td>60,3</td>
<td>40,5</td>
</tr>
<tr>
<td>pyreene</td>
<td>99</td>
<td>98</td>
<td>80,4</td>
<td>48,4</td>
<td>81,1</td>
<td>49,5</td>
</tr>
</tbody>
</table>

Tabel II.6 Overzicht van het voorkomen van PCB’s in neerslagmonsters in Nederland voor de jaren 2000 en 2001. Naast de gemiddelde concentratie over alle monsters is ook het gemiddelde van alleen die monsters, waarin de stof is aangetroffen, gegeven.

1 De gemiddelde concentratie van PCB-118 was hoger (3,6 ng/l), als gevolg van een pick in de concentraties van 298 ng/l op station Ketelhaven, in december 2001. Aangezien het hier waarschijnlijk om een uitblijver gaat, is deze waarde niet meegenomen. De concentratie was ook verhoogd op station Lelystad, maar in mindere mate (10 ng/l).
Bijlage III De nauwkeurigheid van de geschatte atmosferische belasting

Nauwkeurigheid van de geschatte depositie
Zoals hiervoor al rapportage is vermeld is de bepaling van representatieve grootheden uit meetgegevens niet eenvoudig. Sommige stoffen komen een gedeelte van het jaar niet boven de detectiegrens voor, maar worden de rest van het jaar aangetroffen (zie Bijlage II). Voorbeelden van stoffen met een dergelijk concentratieverloop zijn de herbiciden propachloor en het fungicide fluazinam. Wanneer de concentratie van een stof zo laag is, dat het niet met de gebruikte meetmethode kan worden aangetoond, kan de stof toch nog in een monster aanwezig zijn. Wanneer de concentratie in dit monster als ‘0’ wordt meegenomen in de middeling van de concentraties, zorgt dit mogelijk voor een onderschatting van de berekende gemiddelde concentratie, en van de daaruit afgeleide belasting door depositie. Het belang van dit mogelijke artefact is onderzocht. Daarbij is aangenomen dat de concentratie in plaats van de gerapporteerde concentratie nul een waarde heeft die gelijk is aan één derde van de gerapporteerde detectiegrens. Het verschil tussen de op deze wijze berekende gemiddelde depositie of concentratie geeft aan hoe groot het effect van de gevoeligheid van de methode is. Voor sommige stoffen, die gedurende het gehele jaar aangetoond worden, is de invloed van de detectielimiet op de berekende depositie gering. Voorbeelden van dergelijke stoffen zijn DNOC en dichlobenil. Voor andere stoffen is de onzekerheid zo groot dat geen betrouwbare uitspraak kan worden gedaan. Dit geldt voor aldrin, bitertanol, demetone-S-methyl, diazinon, endrin, fenthion, heptachlorepoxide, heptenofos, hexachloorbutadien, malathion, o,p'-DDE, p,p'-DDT, prochloraz, telodrin, triademol, triazofos.

In Tabel III.1 is de gevonden range voor alle stoffen onder invloed van de detectiegrens aangegeven.

Tabel III.1 geeft een schatting van de landelijk gemiddelde droge depositie van pesticiden naar bodem en water voor de jaren 2000 en 2001. Ook wordt het aandeel van de droge depositie op de totale depositie gegeven. Voor stoffen die moeilijk in neerslag en of lucht kunnen worden aangetoond zou de depositie kunnen worden onderschat, als deze stoffen in concentraties voorkomen, die lager zijn dan de detectiegrens. Om een idee te krijgen van de mogelijke onderschatting van de depositie is een bovengrens van de depositie berekend, door éénderde van de detectielimiet te hanteren wanneer stoffen niet zijn aangetoond in monsters. In de ‘tot’ kolom van de tabel is deze depositie weergegeven.
<table>
<thead>
<tr>
<th>Stof</th>
<th>Natte depositie</th>
<th>Totale depositie op Ned.Oppervlaktewater (kg/jr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>van</td>
<td>tot</td>
</tr>
<tr>
<td>2,4-D</td>
<td>1,2</td>
<td>5,5</td>
</tr>
<tr>
<td>aldrin</td>
<td>0,0</td>
<td>19,7</td>
</tr>
<tr>
<td>atrazin</td>
<td>23,9</td>
<td>30,7</td>
</tr>
<tr>
<td>bentazon</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bitertanol</td>
<td>0,0</td>
<td>8,3</td>
</tr>
<tr>
<td>captan</td>
<td>9,3</td>
<td>37,0</td>
</tr>
<tr>
<td>chloorfeninfos</td>
<td>0,3</td>
<td>24,9</td>
</tr>
<tr>
<td>chloorproflam</td>
<td>240,2</td>
<td>241,2</td>
</tr>
<tr>
<td>chloorpyriphos-methyl</td>
<td>0,7</td>
<td>2,5</td>
</tr>
<tr>
<td>chloorothalonl²</td>
<td>33,3</td>
<td>34,9</td>
</tr>
<tr>
<td>chloridazon (pyrazen)</td>
<td>0,6</td>
<td>21,2</td>
</tr>
<tr>
<td>deltametrin</td>
<td>0,0</td>
<td>15,6</td>
</tr>
<tr>
<td>demetone-S-methyl</td>
<td>0,0</td>
<td>9,2</td>
</tr>
<tr>
<td>diazinon</td>
<td>1,1</td>
<td>33,0</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>30,9</td>
<td>30,9</td>
</tr>
<tr>
<td>dichlorofos</td>
<td>9,8</td>
<td>40,2</td>
</tr>
<tr>
<td>dicofol</td>
<td>0,0</td>
<td>54,4</td>
</tr>
<tr>
<td>dimethoat</td>
<td>6,1</td>
<td>55,0</td>
</tr>
<tr>
<td>disulfoton</td>
<td>0,0</td>
<td>16,8</td>
</tr>
<tr>
<td>DNOC</td>
<td>2254,8</td>
<td>2258,2</td>
</tr>
<tr>
<td>endosulfan I</td>
<td>0,1</td>
<td>71,8</td>
</tr>
<tr>
<td>endosulfan II</td>
<td>2,9</td>
<td>75,0</td>
</tr>
<tr>
<td>endrin</td>
<td>0,0</td>
<td>29,4</td>
</tr>
<tr>
<td>epoxiconazol</td>
<td>5,1</td>
<td>16,7</td>
</tr>
<tr>
<td>ethofumesat²</td>
<td>13,3</td>
<td>19,3</td>
</tr>
<tr>
<td>parathion-ethyl</td>
<td>0,3</td>
<td>10,0</td>
</tr>
<tr>
<td>fenitrothion</td>
<td>0,1</td>
<td>18,8</td>
</tr>
<tr>
<td>fenitox</td>
<td>0,1</td>
<td>1,3</td>
</tr>
<tr>
<td>fluazinam</td>
<td>20,0</td>
<td>39,5</td>
</tr>
<tr>
<td>fluoroxypr²</td>
<td>8,4</td>
<td>21,5</td>
</tr>
<tr>
<td>fosfamidon</td>
<td>0,0</td>
<td>43,1</td>
</tr>
<tr>
<td>heptachlor</td>
<td>0,0</td>
<td>22,2</td>
</tr>
<tr>
<td>heptachlor epoxide</td>
<td>0,0</td>
<td>3,2</td>
</tr>
<tr>
<td>heptenfos</td>
<td>0,0</td>
<td>26,4</td>
</tr>
<tr>
<td>hexachloro-1,3-butadieen</td>
<td>0,0</td>
<td>1,0</td>
</tr>
<tr>
<td>hexachlorendezeen</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>isoxtaltole</td>
<td>0,9</td>
<td>56,3</td>
</tr>
<tr>
<td>kresoxim-methyl¹</td>
<td>10,3</td>
<td>13,9</td>
</tr>
<tr>
<td>lindsaan</td>
<td>24,1</td>
<td>53,4</td>
</tr>
<tr>
<td>malathion</td>
<td>0,0</td>
<td>29,3</td>
</tr>
<tr>
<td>MCPA</td>
<td>15,6</td>
<td>17,5</td>
</tr>
<tr>
<td>mecoprop</td>
<td>12,0</td>
<td>30,9</td>
</tr>
<tr>
<td>metamitron</td>
<td>1,2</td>
<td>8,4</td>
</tr>
<tr>
<td>methiocarb</td>
<td>0,1</td>
<td>4,6</td>
</tr>
</tbody>
</table>

Tabel III.1: Jaargemiddelde range in natte en totale depositie van pesticiden op Nederlands binnenwater, voor de jaren 2000 en 2001 (kg/jr), berekend uit een gemiddelde over alle meetlocaties.
<table>
<thead>
<tr>
<th>Stof</th>
<th>Natte depositie</th>
<th>Totale depositie op Ned.Oppervlaktewater (kg/jr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td>van tot</td>
<td>van tot</td>
</tr>
<tr>
<td>methomyl</td>
<td>0,0 175,2</td>
<td>-</td>
</tr>
<tr>
<td>parathion-methyl</td>
<td>0,1 23,5</td>
<td>-</td>
</tr>
<tr>
<td>metolachloork</td>
<td>17,8 21,3</td>
<td>4,3 7,4</td>
</tr>
<tr>
<td>mevinfos</td>
<td>0,4 18,2</td>
<td>0,3 11,3</td>
</tr>
<tr>
<td>o,p'-DDD2</td>
<td>6,2 7,7</td>
<td>1,1 2,6</td>
</tr>
<tr>
<td>o,p'-DDE</td>
<td>0,0 4,6</td>
<td>-</td>
</tr>
<tr>
<td>p,p'-DDT2</td>
<td>-</td>
<td>0,3 4,2</td>
</tr>
<tr>
<td>PCP</td>
<td>13,9 14,0</td>
<td>9,2 9,3</td>
</tr>
<tr>
<td>pentachloorbenzein1</td>
<td>0,4 0,5</td>
<td>0,5 0,8</td>
</tr>
<tr>
<td>pirimicarb</td>
<td>0,2 42,2</td>
<td>0,9 7,7</td>
</tr>
<tr>
<td>pirimifos-methyl</td>
<td>0,0 49,9</td>
<td>17,0 19,6</td>
</tr>
<tr>
<td>prochloraz</td>
<td>2,1 33,2</td>
<td>2,6 26,2</td>
</tr>
<tr>
<td>procymidon</td>
<td>13,1 15,4</td>
<td>8,4 9,8</td>
</tr>
<tr>
<td>propachloork</td>
<td>161,0 169,0</td>
<td>127,8 132,7</td>
</tr>
<tr>
<td>propoxur</td>
<td>2,3 13,5</td>
<td>1,5 8,9</td>
</tr>
<tr>
<td>pyrazofos</td>
<td>2,2 12,0</td>
<td>0,0 7,0</td>
</tr>
<tr>
<td>simazin</td>
<td>1,4 24,7</td>
<td>1,1 19,7</td>
</tr>
<tr>
<td>telodrin</td>
<td>0,0 6,2</td>
<td>-</td>
</tr>
<tr>
<td>terbutylazine1</td>
<td>19,2 20,1</td>
<td>18,7 20,0</td>
</tr>
<tr>
<td>tetramisobifenol A2</td>
<td>0,0 0,0</td>
<td>7,1 7,4</td>
</tr>
<tr>
<td>tolclofos-methyl</td>
<td>7,8 21,3</td>
<td>5,8 14,5</td>
</tr>
<tr>
<td>triadienol</td>
<td>0,0 11,7</td>
<td>-</td>
</tr>
<tr>
<td>triallaat</td>
<td>54,6 56,4</td>
<td>8,2 9,3</td>
</tr>
<tr>
<td>triazofos</td>
<td>0,0 22,8</td>
<td>-</td>
</tr>
<tr>
<td>trifluralin</td>
<td>5,3 6,0</td>
<td>9,1 9,5</td>
</tr>
<tr>
<td>vinchlorofozol1</td>
<td>31,3 31,6</td>
<td>30,1 31,9</td>
</tr>
</tbody>
</table>

1 Stoffen die in 2000 op vier locaties zijn bepaald en in 2001 op alle locaties.
- Stoffen die in het jaar 2001 niet meer zijn bepaald.

Tabel III.2 Jaargemiddelde range in natte depositie van PAK voor de jaren 2000 en 2001 (µg/m²/jr).

<table>
<thead>
<tr>
<th>Stof</th>
<th>Natte Depositie 2000 (µg/m²/jr)</th>
<th>Natte Depositie 2001 (µg/m²/jr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>van tot</td>
<td>van tot</td>
</tr>
<tr>
<td>acenaafleen</td>
<td>6,2 6,2</td>
<td>4,4 4,4</td>
</tr>
<tr>
<td>acenaafyleen</td>
<td>2,9 3,6</td>
<td>2,8 3,3</td>
</tr>
<tr>
<td>anthracen</td>
<td>8,5 8,5</td>
<td>5,7 5,8</td>
</tr>
<tr>
<td>benzo[a]antracen</td>
<td>9,4 9,4</td>
<td>8,1 8,1</td>
</tr>
<tr>
<td>benze[a]pyrene</td>
<td>14,2 14,3</td>
<td>9,3 9,3</td>
</tr>
<tr>
<td>benze[b]fluoranteen</td>
<td>31,8 31,8</td>
<td>20,7 20,7</td>
</tr>
<tr>
<td>benzo[g,h,i]peryleen</td>
<td>13,8 13,8</td>
<td>9,3 9,3</td>
</tr>
<tr>
<td>benze[k]fluoranteen</td>
<td>19,3 19,3</td>
<td>15,2 15,2</td>
</tr>
<tr>
<td>chryseen</td>
<td>28,1 28,1</td>
<td>21,7 21,7</td>
</tr>
<tr>
<td>dibenz[a,h]-antracen</td>
<td>2,2 2,2</td>
<td>3,0 3,0</td>
</tr>
<tr>
<td>fenantreen</td>
<td>89,5 89,5</td>
<td>67,8 67,8</td>
</tr>
<tr>
<td>fluoranteen</td>
<td>78,3 78,3</td>
<td>72,2 72,2</td>
</tr>
<tr>
<td>fluoreen</td>
<td>14,0 14,0</td>
<td>10,2 10,2</td>
</tr>
<tr>
<td>indenol[1,2,3-cd]pyreen</td>
<td>12,5 12,5</td>
<td>8,8 8,8</td>
</tr>
<tr>
<td>naftaleen</td>
<td>44,7 44,7</td>
<td>33,3 33,3</td>
</tr>
<tr>
<td>pyreen</td>
<td>58,2 58,2</td>
<td>45,4 45,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>atrazine</td>
<td>0,02</td>
<td>0,00</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>bentazon</td>
<td>0,45</td>
<td>0,78</td>
<td>0,34</td>
<td>0,69</td>
</tr>
<tr>
<td>captan</td>
<td>0,47</td>
<td>0,63</td>
<td>0,02</td>
<td>0,03</td>
</tr>
<tr>
<td>chlofoenvinfos</td>
<td>0,71</td>
<td>0,68</td>
<td>0,29</td>
<td>0,26</td>
</tr>
<tr>
<td>chloorphosfam</td>
<td>0,58</td>
<td>0,53</td>
<td>0,18</td>
<td>0,15</td>
</tr>
<tr>
<td>chloopyriphos-methyl</td>
<td>0,51</td>
<td>0,43</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>chloothalonil</td>
<td>0,66</td>
<td>0,42</td>
<td>0,09</td>
<td>0,02</td>
</tr>
<tr>
<td>diazinon</td>
<td>0,22</td>
<td>0,00</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>dichlofenil</td>
<td>0,96</td>
<td>0,95</td>
<td>0,20</td>
<td>0,18</td>
</tr>
<tr>
<td>dichlorofos</td>
<td>0,47</td>
<td>0,49</td>
<td>0,02</td>
<td>0,03</td>
</tr>
<tr>
<td>dimethoat</td>
<td>0,03</td>
<td>0,93</td>
<td>0,02</td>
<td>0,89</td>
</tr>
<tr>
<td>DNOC</td>
<td>0,07</td>
<td>0,12</td>
<td>0,00</td>
<td>0,01</td>
</tr>
<tr>
<td>endosulfan I</td>
<td>0,87</td>
<td>0,76</td>
<td>0,42</td>
<td>0,26</td>
</tr>
<tr>
<td>endosulfan II</td>
<td>0,18</td>
<td>0,86</td>
<td>0,02</td>
<td>0,41</td>
</tr>
<tr>
<td>ethofumesate</td>
<td>0,03</td>
<td>0,61</td>
<td>0,01</td>
<td>0,35</td>
</tr>
<tr>
<td>ethyl-parathion</td>
<td>0,06</td>
<td>1,00</td>
<td>0,00</td>
<td>1,00</td>
</tr>
<tr>
<td>flubromifos</td>
<td>0,37</td>
<td>0,21</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>fluoxypyr</td>
<td>0,68</td>
<td>0,92</td>
<td>0,00</td>
<td>0,25</td>
</tr>
<tr>
<td>heptachlool</td>
<td>1,00</td>
<td>-</td>
<td>1,00</td>
<td>-</td>
</tr>
<tr>
<td>hexachloorenazene</td>
<td>0,50</td>
<td>0,61</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>kresoxim-methyl</td>
<td>0,31</td>
<td>0,18</td>
<td>0,02</td>
<td>0,01</td>
</tr>
<tr>
<td>lindan</td>
<td>0,39</td>
<td>0,19</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>MCPA</td>
<td>0,03</td>
<td>0,07</td>
<td>0,03</td>
<td>0,06</td>
</tr>
<tr>
<td>mecoprop</td>
<td>0,00</td>
<td>0,09</td>
<td>0,00</td>
<td>0,06</td>
</tr>
<tr>
<td>methiocarb</td>
<td>0,00</td>
<td>0,05</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>metolachlool</td>
<td>0,26</td>
<td>0,17</td>
<td>0,11</td>
<td>0,07</td>
</tr>
<tr>
<td>mevinos</td>
<td>0,82</td>
<td>0,87</td>
<td>0,00</td>
<td>0,85</td>
</tr>
<tr>
<td>o,p'-DDD</td>
<td>0,29</td>
<td>0,04</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>p,p'-DDT</td>
<td>-</td>
<td>0,20</td>
<td>-</td>
<td>0,00</td>
</tr>
<tr>
<td>PCP</td>
<td>0,64</td>
<td>0,64</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>pentachloorenazene</td>
<td>0,34</td>
<td>0,20</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>pirimicarb</td>
<td>0,49</td>
<td>0,27</td>
<td>0,39</td>
<td>0,19</td>
</tr>
<tr>
<td>pirimiphos-methyl</td>
<td>1,00</td>
<td>0,95</td>
<td>1,00</td>
<td>0,53</td>
</tr>
<tr>
<td>prochloraz</td>
<td>0,01</td>
<td>0,12</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>procymidon</td>
<td>0,47</td>
<td>0,35</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>propachlool</td>
<td>0,49</td>
<td>0,36</td>
<td>0,06</td>
<td>0,04</td>
</tr>
<tr>
<td>propoxur</td>
<td>0,09</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>pyrazofos</td>
<td>0,54</td>
<td>1,00</td>
<td>0,00</td>
<td>1,00</td>
</tr>
<tr>
<td>simazine</td>
<td>0,63</td>
<td>0,71</td>
<td>0,32</td>
<td>0,40</td>
</tr>
<tr>
<td>terbutylazine</td>
<td>0,02</td>
<td>0,37</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>tetrabromobisphenol A</td>
<td>0,11</td>
<td>0,09</td>
<td>0,00</td>
<td>0,01</td>
</tr>
<tr>
<td>tolclofos-methyl</td>
<td>0,50</td>
<td>0,52</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>tripalate</td>
<td>0,73</td>
<td>0,90</td>
<td>0,03</td>
<td>0,09</td>
</tr>
<tr>
<td>trifluralin</td>
<td>0,91</td>
<td>0,90</td>
<td>0,08</td>
<td>0,07</td>
</tr>
<tr>
<td>vinclozolin</td>
<td>0,68</td>
<td>0,72</td>
<td>0,46</td>
<td>0,44</td>
</tr>
<tr>
<td>PAK</td>
<td>Fractie droge depositie naar water 2000</td>
<td>Fractie droge depositie naar water 2001</td>
<td>Fractie droge depositie naar bodem 2000</td>
<td>Fractie droge depositie naar bodem 2001</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>acenaflecn</td>
<td>0,98</td>
<td>0,98</td>
<td>0,74</td>
<td>0,77</td>
</tr>
<tr>
<td>acenafyleen</td>
<td>0,86</td>
<td>0,88</td>
<td>0,27</td>
<td>0,30</td>
</tr>
<tr>
<td>antracene</td>
<td>0,89</td>
<td>0,76</td>
<td>0,25</td>
<td>0,11</td>
</tr>
<tr>
<td>benzo_a_antracene</td>
<td>0,30</td>
<td>0,18</td>
<td>0,04</td>
<td>0,02</td>
</tr>
<tr>
<td>benzo_a_pyreen</td>
<td>0,33</td>
<td>0,41</td>
<td>-0,24</td>
<td>-0,38</td>
</tr>
<tr>
<td>benzo_b_fluoranteen</td>
<td>0,38</td>
<td>0,52</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>benzo_g_h_i_perylene</td>
<td>0,30</td>
<td>0,47</td>
<td>0,41</td>
<td>0,58</td>
</tr>
<tr>
<td>benzo_k_fluoranteen</td>
<td>0,40</td>
<td>0,51</td>
<td>0,38</td>
<td>0,48</td>
</tr>
<tr>
<td>chryseene</td>
<td>0,41</td>
<td>0,26</td>
<td>-0,79</td>
<td>-0,28</td>
</tr>
<tr>
<td>dibenzo_a_h_antracene</td>
<td>0,21</td>
<td>0,27</td>
<td>0,01</td>
<td>0,02</td>
</tr>
<tr>
<td>fenantrene</td>
<td>0,90</td>
<td>0,93</td>
<td>0,36</td>
<td>0,46</td>
</tr>
<tr>
<td>fluoranteen</td>
<td>0,75</td>
<td>0,81</td>
<td>0,44</td>
<td>0,50</td>
</tr>
<tr>
<td>fluorene</td>
<td>0,97</td>
<td>0,98</td>
<td>0,66</td>
<td>0,72</td>
</tr>
<tr>
<td>indeno_1,2,3-cd_pyrene</td>
<td>0,30</td>
<td>0,48</td>
<td>0,09</td>
<td>0,18</td>
</tr>
<tr>
<td>naftaileen</td>
<td>0,94</td>
<td>0,96</td>
<td>0,06</td>
<td>0,09</td>
</tr>
<tr>
<td>pyreene</td>
<td>0,67</td>
<td>0,77</td>
<td>0,08</td>
<td>0,12</td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-101</td>
<td>0,06</td>
<td>0,40</td>
<td>-0,002</td>
<td>-0,016</td>
</tr>
<tr>
<td>PCB-118</td>
<td>0,02</td>
<td>0,03</td>
<td>0,000</td>
<td>0,001</td>
</tr>
<tr>
<td>PCB-138</td>
<td>0,03</td>
<td>0,01</td>
<td>-0,001</td>
<td>0,000</td>
</tr>
<tr>
<td>PCB-153</td>
<td>0,03</td>
<td>0,00</td>
<td>-0,001</td>
<td>0,000</td>
</tr>
<tr>
<td>PCB-180</td>
<td>0,03</td>
<td>0,00</td>
<td>-0,001</td>
<td>0,000</td>
</tr>
<tr>
<td>PCB-20</td>
<td>0,20</td>
<td>0,17</td>
<td>-0,007</td>
<td>-0,005</td>
</tr>
<tr>
<td>PCB-28</td>
<td>0,10</td>
<td>0,11</td>
<td>-0,003</td>
<td>-0,003</td>
</tr>
<tr>
<td>PCB-35</td>
<td>0,13</td>
<td>0,27</td>
<td>-0,004</td>
<td>-0,009</td>
</tr>
<tr>
<td>PCB-52</td>
<td>0,07</td>
<td>0,24</td>
<td>-0,002</td>
<td>-0,008</td>
</tr>
<tr>
<td>PCB-8</td>
<td>0,30</td>
<td>0,48</td>
<td>-0,012</td>
<td>-0,023</td>
</tr>
</tbody>
</table>

Deze tabel laat zien dat de droge depositie een aanzienlijk gedeelte van de totale depositie kan uitmaken. Boven wateroppervlakken heeft de droge depositie van goed oplosbare stoffen een groot aandeel in de totale depositie.

Tabel III.4 Jaargemiddelde natte depositie van PCB’s voor de jaren 2000 en 2001 (µg/m²/jr).

<table>
<thead>
<tr>
<th>Stof</th>
<th>Natte Depositie 2000 (µg/m²/jr)</th>
<th>Natte Depositie 2001 (µg/m²/jr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>van</td>
<td>tot</td>
</tr>
<tr>
<td>PCB-101</td>
<td>0,9</td>
<td>1,0</td>
</tr>
<tr>
<td>PCB-118</td>
<td>0,3</td>
<td>0,4</td>
</tr>
<tr>
<td>PCB-138</td>
<td>0,3</td>
<td>0,4</td>
</tr>
<tr>
<td>PCB-153</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>PCB-180</td>
<td>0,1</td>
<td>0,3</td>
</tr>
<tr>
<td>PCB-20</td>
<td>0,6</td>
<td>0,9</td>
</tr>
<tr>
<td>PCB-28</td>
<td>0,9</td>
<td>1,5</td>
</tr>
<tr>
<td>PCB-35</td>
<td>0,1</td>
<td>0,6</td>
</tr>
<tr>
<td>PCB-52</td>
<td>1,4</td>
<td>1,6</td>
</tr>
<tr>
<td>PCB-8</td>
<td>0,2</td>
<td>0,9</td>
</tr>
</tbody>
</table>
Tabel III.5 Totale depositie naar Nederland (bodem) en naar Nederlands oppervlaktewater (kg/jr). De variatie over Nederland wordt aangegeven door het landelijk minimum en het landelijk maximum weer te geven. De gebruikte oppervlakte voor Nederland is 36.783 km², de gebruikte oppervlakte vooroppervlaktewater is 2.790 km². Dit is exclusief het IJsselmeer, de Waddenzee, de Ooster- en Westerschelde. Een scheef gedrukte "0" geeft aan dat de stof niet is aangetroffen.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Naar Nederlandse bodem</th>
<th>Naar Nederlands oppervlaktewater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Landelijk minimum</td>
<td>Landelijk maximum</td>
</tr>
<tr>
<td>2,4-D</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>atrazine</td>
<td>12</td>
<td>47</td>
</tr>
<tr>
<td>bentazon</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>captan</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>chlofoenflos</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>chlooreprofam</td>
<td>14</td>
<td>2738</td>
</tr>
<tr>
<td>chlorpyrifos-methyl</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>chloridazon (pyrazon)</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>8</td>
<td>74</td>
</tr>
<tr>
<td>diazinon</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>97</td>
<td>1454</td>
</tr>
<tr>
<td>dichlorovos</td>
<td>0</td>
<td>173</td>
</tr>
<tr>
<td>dimethoat</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>DNOC</td>
<td>763</td>
<td>2997</td>
</tr>
<tr>
<td>endosulfan I</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>endosulfan II</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>epoxiconazol</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>ethofumesaat</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>parathion-ethyl</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>fenithion</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>fenphion</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td>flusazinam</td>
<td>7</td>
<td>83</td>
</tr>
<tr>
<td>fluroxypyr</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>hexachlo-1,3-butadieen</td>
<td>0</td>
<td>0,04</td>
</tr>
<tr>
<td>hexachloorebenzenen</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>isoxafluotol</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>kresoxin-methyl</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>lindan</td>
<td>11</td>
<td>103</td>
</tr>
<tr>
<td>malathion</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MCPA</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>mecoprop</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>metamitron</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>methiocarb</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>parathion-methyl</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>metolachlor</td>
<td>5</td>
<td>143</td>
</tr>
<tr>
<td>mevinfos</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>o,p'-DDD</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>p,p'-DDT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PCP</td>
<td>21</td>
<td>48</td>
</tr>
<tr>
<td>pentachloorebenzenen</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>pirimicarb</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>pirimifos-methyl</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>prochloraz</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>procymidon</td>
<td>3</td>
<td>83</td>
</tr>
<tr>
<td>propachlor</td>
<td>52</td>
<td>1536</td>
</tr>
<tr>
<td>propoxur</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>pyrazosfos</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>simazine</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>terbutylazine</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>tetramobisfenol A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>toflofos-methyl</td>
<td>0</td>
<td>138</td>
</tr>
<tr>
<td>triafluron</td>
<td>100</td>
<td>464</td>
</tr>
<tr>
<td>trifluralin</td>
<td>27</td>
<td>89</td>
</tr>
<tr>
<td>vinclozolin</td>
<td>6</td>
<td>143</td>
</tr>
</tbody>
</table>
Ruimtelijke verdeling van de totale depositie

Uit de berekende totale depositie naar oppervlaktwater voor alle achttien locaties is de minimaal, de maximale en gemiddelde depositie berekend in gram per hectare per jaar. Ook is de locatie van de maximale depositie vastgesteld. Deze gegevens zijn weergegeven in Tabel III.6.

Tabel III.6 Totale depositie naar Nederlands oppervlaktwater (gram per hectare per jaar). De variatie over Nederland wordt aangegeven door het landelijk minimum en het landelijk maximum weer te geven.

<table>
<thead>
<tr>
<th>Nederlands oppervlakte-water</th>
<th>Locatie</th>
<th>Locatie</th>
<th>Locatie</th>
<th>Locatie</th>
<th>Locatie</th>
<th>Locatie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/ha/jr</td>
<td>g/ha/jr</td>
<td>g/ha/jr</td>
<td>g/ha/jr</td>
<td>g/ha/jr</td>
<td>g/ha/jr</td>
</tr>
<tr>
<td>2,4-D</td>
<td>0,009</td>
<td>0,009</td>
<td>0,004</td>
<td>KE</td>
<td>0,003</td>
<td>0,026</td>
</tr>
<tr>
<td>atrazine</td>
<td>0,044</td>
<td>0,169</td>
<td>0,086</td>
<td>WY</td>
<td>0,032</td>
<td>0,208</td>
</tr>
<tr>
<td>bentazon</td>
<td>0,000</td>
<td>0,032</td>
<td>0,006</td>
<td>ZI</td>
<td>0,000</td>
<td>0,063</td>
</tr>
<tr>
<td>captan</td>
<td>0,000</td>
<td>0,241</td>
<td>0,055</td>
<td>WY</td>
<td>0,000</td>
<td>0,746</td>
</tr>
<tr>
<td>chlooretvifinos</td>
<td>0,000</td>
<td>0,021</td>
<td>0,003</td>
<td>EG</td>
<td>0,000</td>
<td>0,029</td>
</tr>
<tr>
<td>chlooreprofam</td>
<td>0,051</td>
<td>9,814</td>
<td>1,965</td>
<td>AP</td>
<td>0,143</td>
<td>4,980</td>
</tr>
<tr>
<td>chlorpyriphos-methyl</td>
<td>0,001</td>
<td>0,017</td>
<td>0,005</td>
<td>ZI</td>
<td>0,000</td>
<td>0,007</td>
</tr>
<tr>
<td>chloridazon (pyrazon)</td>
<td>0,000</td>
<td>0,014</td>
<td>0,002</td>
<td>YE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>chloorthalonil</td>
<td>0,027</td>
<td>0,266</td>
<td>0,150</td>
<td>YE</td>
<td>0,007</td>
<td>0,365</td>
</tr>
<tr>
<td>diazinon</td>
<td>0,000</td>
<td>0,023</td>
<td>0,004</td>
<td>AL</td>
<td>0,000</td>
<td>0,030</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>0,348</td>
<td>5,210</td>
<td>2,423</td>
<td>YE</td>
<td>0,612</td>
<td>2,963</td>
</tr>
<tr>
<td>dichlorevos</td>
<td>0,000</td>
<td>0,620</td>
<td>0,065</td>
<td>GP</td>
<td>0,000</td>
<td>0,462</td>
</tr>
<tr>
<td>dimethoat</td>
<td>0,000</td>
<td>0,115</td>
<td>0,022</td>
<td>AN</td>
<td>0,000</td>
<td>0,046</td>
</tr>
<tr>
<td>DNOC</td>
<td>2,736</td>
<td>10,743</td>
<td>8,463</td>
<td>SP</td>
<td>1,238</td>
<td>5,632</td>
</tr>
<tr>
<td>endosulfan I</td>
<td>0,000</td>
<td>0,030</td>
<td>0,004</td>
<td>WY</td>
<td>0,006</td>
<td>0,038</td>
</tr>
<tr>
<td>endosulfan II</td>
<td>0,000</td>
<td>0,052</td>
<td>0,012</td>
<td>GP</td>
<td>0,000</td>
<td>0,028</td>
</tr>
<tr>
<td>epoxiconazol</td>
<td>0,000</td>
<td>0,024</td>
<td>0,011</td>
<td>GP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ethofumesaat</td>
<td>0,000</td>
<td>0,073</td>
<td>0,029</td>
<td>GP</td>
<td>0,019</td>
<td>0,413</td>
</tr>
<tr>
<td>parathion-ethyl</td>
<td>0,000</td>
<td>0,008</td>
<td>0,001</td>
<td>AN</td>
<td>0,000</td>
<td>0,005</td>
</tr>
<tr>
<td>fenitrothion</td>
<td>0,000</td>
<td>0,003</td>
<td>0,000</td>
<td>NO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fenithion</td>
<td>0,000</td>
<td>0,001</td>
<td>0,000</td>
<td>DE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fluazinam</td>
<td>0,025</td>
<td>0,296</td>
<td>0,111</td>
<td>YE</td>
<td>0,016</td>
<td>0,660</td>
</tr>
<tr>
<td>fluoroxypry</td>
<td>0,000</td>
<td>0,078</td>
<td>0,017</td>
<td>GP</td>
<td>0,000</td>
<td>0,081</td>
</tr>
<tr>
<td>hexachlor-1,3-butadiene</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>AP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hexachlorbenzenen</td>
<td>0,003</td>
<td>0,019</td>
<td>0,006</td>
<td>AP</td>
<td>0,001</td>
<td>0,024</td>
</tr>
<tr>
<td>isoxaflutole</td>
<td>0,000</td>
<td>0,009</td>
<td>0,002</td>
<td>DE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>kresoxim-methyl</td>
<td>0,000</td>
<td>0,070</td>
<td>0,030</td>
<td>AP</td>
<td>0,012</td>
<td>0,101</td>
</tr>
<tr>
<td>lindan</td>
<td>0,039</td>
<td>0,370</td>
<td>0,139</td>
<td>WY</td>
<td>0,000</td>
<td>0,189</td>
</tr>
<tr>
<td>malathion</td>
<td>0,000</td>
<td>0,003</td>
<td>0,000</td>
<td>SP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>0,003</td>
<td>0,109</td>
<td>0,056</td>
<td>YE</td>
<td>0,020</td>
<td>0,093</td>
</tr>
<tr>
<td>mecoprop</td>
<td>0,008</td>
<td>0,093</td>
<td>0,042</td>
<td>YE</td>
<td>0,009</td>
<td>0,090</td>
</tr>
<tr>
<td>metamitron</td>
<td>0,000</td>
<td>0,007</td>
<td>0,002</td>
<td>DE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>methiocarb</td>
<td>0,000</td>
<td>0,002</td>
<td>0,000</td>
<td>AL</td>
<td>0,000</td>
<td>0,092</td>
</tr>
<tr>
<td>parathion-methyl</td>
<td>0,000</td>
<td>0,004</td>
<td>0,000</td>
<td>SP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>metolachlor</td>
<td>0,019</td>
<td>0,514</td>
<td>0,084</td>
<td>WY</td>
<td>0,002</td>
<td>0,089</td>
</tr>
<tr>
<td>mevinfos</td>
<td>0,000</td>
<td>0,028</td>
<td>0,007</td>
<td>SP</td>
<td>0,000</td>
<td>0,044</td>
</tr>
<tr>
<td>o,p'-DDD</td>
<td>0,000</td>
<td>0,043</td>
<td>0,013</td>
<td>GP</td>
<td>0,000</td>
<td>0,014</td>
</tr>
<tr>
<td>p,p'-DDT</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>-</td>
<td>0,000</td>
<td>0,012</td>
</tr>
<tr>
<td>PCP</td>
<td>0,075</td>
<td>0,171</td>
<td>0,137</td>
<td>ST</td>
<td>0,047</td>
<td>0,222</td>
</tr>
<tr>
<td>pentachlorbenzenen</td>
<td>0,000</td>
<td>0,005</td>
<td>0,001</td>
<td>AP</td>
<td>0,001</td>
<td>0,006</td>
</tr>
<tr>
<td>pirimicarb</td>
<td>0,000</td>
<td>0,009</td>
<td>0,001</td>
<td>SP</td>
<td>0,000</td>
<td>0,016</td>
</tr>
<tr>
<td>pirimitos-methyl</td>
<td>0,000</td>
<td>0,053</td>
<td>0,008</td>
<td>AP</td>
<td>0,354</td>
<td>4,202</td>
</tr>
<tr>
<td>prochloraz</td>
<td>0,000</td>
<td>0,065</td>
<td>0,007</td>
<td>NO</td>
<td>0,000</td>
<td>0,082</td>
</tr>
<tr>
<td>procymidon</td>
<td>0,012</td>
<td>0,298</td>
<td>0,089</td>
<td>ZI</td>
<td>0,003</td>
<td>0,218</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>propachlor</td>
<td>0,185 g/ha/jr</td>
<td>5,507 g/ha/jr</td>
<td>1,112 g/ha/jr</td>
<td>KE</td>
<td>0,099 g/ha/jr</td>
<td>3,902 g/ha/jr</td>
</tr>
<tr>
<td>propoxur</td>
<td>0,000 g/ha/jr</td>
<td>0,032 g/ha/jr</td>
<td>0,008 g/ha/jr</td>
<td>AN</td>
<td>0,000 g/ha/jr</td>
<td>0,017 g/ha/jr</td>
</tr>
<tr>
<td>pyrazofos</td>
<td>0,000 g/ha/jr</td>
<td>0,116 g/ha/jr</td>
<td>0,008 g/ha/jr</td>
<td>EG</td>
<td>0,000 g/ha/jr</td>
<td>0,000 g/ha/jr</td>
</tr>
<tr>
<td>simazine</td>
<td>0,000 g/ha/jr</td>
<td>0,073 g/ha/jr</td>
<td>0,014 g/ha/jr</td>
<td>GP</td>
<td>0,000 g/ha/jr</td>
<td>0,074 g/ha/jr</td>
</tr>
<tr>
<td>terbutylazine</td>
<td>0,000 g/ha/jr</td>
<td>0,140 g/ha/jr</td>
<td>0,041 g/ha/jr</td>
<td>GP</td>
<td>0,003 g/ha/jr</td>
<td>0,461 g/ha/jr</td>
</tr>
<tr>
<td>tetrabromobisfenol A</td>
<td>0,000 g/ha/jr</td>
<td>0,000 g/ha/jr</td>
<td>0,000 g/ha/jr</td>
<td>DE</td>
<td>0,003 g/ha/jr</td>
<td>0,092 g/ha/jr</td>
</tr>
<tr>
<td>tolclofos-methyl</td>
<td>0,000 g/ha/jr</td>
<td>0,494 g/ha/jr</td>
<td>0,054 g/ha/jr</td>
<td>ZI</td>
<td>0,060 g/ha/jr</td>
<td>0,332 g/ha/jr</td>
</tr>
<tr>
<td>triallat</td>
<td>0,359 g/ha/jr</td>
<td>1,664 g/ha/jr</td>
<td>0,716 g/ha/jr</td>
<td>KE</td>
<td>0,057 g/ha/jr</td>
<td>1,552 g/ha/jr</td>
</tr>
<tr>
<td>trifluralin</td>
<td>0,096 g/ha/jr</td>
<td>0,320 g/ha/jr</td>
<td>0,201 g/ha/jr</td>
<td>ZI</td>
<td>0,138 g/ha/jr</td>
<td>0,549 g/ha/jr</td>
</tr>
<tr>
<td>vinclozolin</td>
<td>0,023 g/ha/jr</td>
<td>0,513 g/ha/jr</td>
<td>0,157 g/ha/jr</td>
<td>AP</td>
<td>0,057 g/ha/jr</td>
<td>1,817 g/ha/jr</td>
</tr>
</tbody>
</table>

Slechts voor een aantal pesticiden is de locatie met de maximale depositie in beide meetjaren hetzelfde: chlorfeninfos (EG), metolachloor (GP), procymidone (ZI), propachloork (KE) en terbutylazine (GP). Voor een gedeelte wordt dit veroorzaakt doordat sommige pesticiden in 2000 slechts op vier locaties zijn gemeten, en in 2001 op achtten. Een andere verklaring kan zijn de meteorologische invloed, of verandering in gebruik van pesticiden.
Bijlage IV Gebruikte verwerkingsmethoden

Interpolatie van ruimtelijke gegevens

Methode om de depositiegegevens op de meetstations ruimtelijk weer te geven

Om de depositie resultaten op de meetstations ruimtelijk over Nederland weer te geven moeten ze worden geïnterpoleerd op locaties tussen de meetstations, en geëxtrapolieerd naar locaties die niet tussen meetstations in liggen. Eerder werd al gebruik gemaakt van lineaire interpolatie met het GIS-programma ArcView. Dit leidt soms tot vreemde waarden in gebieden buiten de meetstations, door interpolatie artefacten. Om een meer geschikte interpolatie-methode te vinden, zijn uit een met OPS gemodelleerd concentratie-veld van fluazinam de waarden op de 18 meetlocaties geëxtraheerd. Met die 18 punt-waarden is met verschillende interpolatietechnieken geprobeerd het modelveld zo goed mogelijk te herleiden. Het OPS model is hier als een soort referentie genomen, omdat het de verdeling van stoffen over het land over het algemeen goed kan beschrijven, wanneer er goede emissiebestanden voorhanden zijn. Zo is een aantal interpolatie methodes gebruikt:
– de Kriging methode, met verschillende modellen om de semi-variogrammen te modelleren (linear, exponentieel, circulair etc.),
– interpolatie, gewogen met de inverse van de afstand tussen de meetstations (IDW),
– de Nearest Neighbour methode, waarin naar een aantal naburige stations invloed heeft op de concentratie.

Voor alle methoden dient een afstandsschaal ingesteld te worden, waarover de invloed van de meetpunten reikt, hetzij door een aantal naburige stations op te geven, of door een vaste afstand als straal op te geven. Eerder werd al gesteld dat de verschillende meetpunten representatief zijn op een schaal van enkele kilometers tot tientallen kilometers, aangezien de meetpunten niet in de directe omgeving van emissiebronnen van pesticiden zijn gelegen. Daarom moet de invloed van de meetstations in die orde van grootte worden gekozen. Er is gebleken dat de semi-variogrammen, die voor de Kriging methode uit de meetwaarden van de verschillende stations worden bepaald, voor slechts weinig stoffen goed met één van de semi-variogram modellen kon worden beschreven. De ruimtelijke samenhang tussen de onderlinge stations bleek vaak te klein. Voor die stoffen, die vanuit het buitenland worden getransporteerd naar Nederland, was er wel genoeg samenhang en werkt de kriging interpolatiemethode goed. Voor fluazinam, in dit voorbeeld, met de belangrijkste bronnen binnen Nederland, was het resultaat met Kriging met lineair model, met 50 kilometer straal redelijk goed. Nadelen van Kriging waren dat maxima werden afgevlakt en minima opgevuld werden. Het beeld werd dus erg “gladgestreken”. Dit was minder het geval wanneer de IDW methode werd gebruikt. Het beste resultaat werd verkregen met de IDW methode met een straal van 50 kilometer. Een grotere straal leidt tot artefacten, met name voor punten die niet tussen meetstations in liggen. Nadeel is dan nog dat niet het hele land wordt bedekt. Voor de hier gepresenteerde plaatjes is dus inverse distance interpolatie gebruikt, met 50 kilometer straal.

Middelingsmethoden

Het bepalen van representatieve grootheden uit de beschikbare meetgegevens is vaak niet eenvoudig. Dat komt omdat de concentratie van sommige stoffen niet vaak en slechts weinig boven de detectiegrens wordt aangetroffen. Bij het bepalen van de concentratie van stoffen in de genomen monsters is hier aandacht aan besteed. Bij elke serie monsters wordt een schatting van de detectiegrens gemaakt. Maar ook beneden deze detectiegrens kan de concentratie worden vastgesteld. Dit kan als volgt worden begrepen:
Bij de GC-MS bepaling wordt de identiteit van stoffen bepaald op basis van retentietijd en nadere identificatie van de stoffen met behulp van massaspectrometrie. In de praktijk wordt steeds de verhouding tussen de intensiteit van twee massa’s in het massaspectrum bepaald en vergeleken met de verhouding in een standaardoplossing van die stof (zie Duyzer et al. 1999). Wanneer de identificatie van de stof slaagt wordt op basis van kalibratie met behulp van de standaardoplossing de concentratie berekend. Wanneer de identificatie niet slaagt dan wordt voor deze stof een nul waarde gerapporteerd. Voor elk monster en elke stof is een ruwe schatting gemaakt van de concentratie waaronder identificatie niet mogelijk is. Dit maakt het mogelijk een indruk te krijgen van de concentratie van de stof, die voor zou kunnen komen, zonder dat de stof in het monster wordt aangetroffen. Deze ‘detectiegrens’ hangt sterk af van de hoeveelheid storende stoffen in het monster en varieert dus per monster. Zo kan in het ene monster een stof goed worden aangetoond in concentraties ruim beneden de detectiegrens die zou gelden in een ander, meer vertroebeld monster. De detectiegrens (berekend als drie maal het rijsniveau) is dus niet veel meer dan een indicatie van de kwaliteit van de kwantitatieve analyse. Er wordt dus met drie soorten resultaten van de analyse gewerkt:

1. Een concentratie in g/l wanneer identificatie geslaagd is. In de tabellen aangegeven als het percentage waarin de stof werd aangetoond.
2. Een concentratie gelijk aan nul wordt gerapporteerd wanneer de identificatie van de stof niet mogelijk is.
3. Een schatting van de detectiegrens, berekend als drie maal de rijs.

De detectiegrens wordt in principe alleen gebruikt om inzicht te krijgen in de kwaliteit van het meetresultaat. Bij pesticiden is een bijkomend aspect dat stoffen niet het hele jaar worden gebruikt. Een bepaald herbicide kan alleen gedurende drie maanden in het voorjaar worden gebruikt. Gedurende drie maanden is de stof goed meetbaar en de rest van het jaar niet. De stof kan zelfs gedurende die drie maanden MTR waarden overschrijden. Het berekende jaargemiddelde komt daardoor erg laag uit en geeft dan niet een goed beeld van het voorkomen van de stof. Ter illustratie geeft Figuur 9 de concentratie van DNOC in neerslagmonsters weer. Deze stof wordt gedurende het gehele jaar aangetroffen. Omdat een redelijk normale verdeling wordt gevonden is het afleiden van representatieve grootheden relatief eenvoudig. Veel lastiger is het om een representatieve groothed af te leiden voor een stof zoals propachlor (Figuur 4 en 5). Het aantal keren dat deze stof kan worden aangetoond is veel geringer dan het aantal keren dat DNOC kan worden aangetoond. Bovendien is het voorkomen log-normaal verdeeld. Er zijn veel monsters waarin de stof nauwelijks kan worden aangetoond. Het is niet op voorhand duidelijk hoe in dit geval de gegevens het best kunnen worden gepresenteerd. Om deze problematiek te omzeilen wordt in deze rapportage naast gemiddelde waarden ook het aantal malen dat de stof wordt aangetroffen, en eventueel normen overschrijdt, gepresenteerd.

Tenslotte is voor de meeste stoffen ook de jaargemiddelde depositie berekend.

Alternatieve middelingsmethoden
Om de gevoeligheid van samenvattende statistieken, zoals het rekenkundig gemiddelde, voor uitschieters te beperken, en om een meer representatieve centrale waarde voor de gemeten concentratie reeksen te krijgen, is gezocht naar alternatieve voor het rekenkundig gemiddelde van de concentratie. Daarbij wordt gelet op de statistische verdeling van die stoffen. Er wordt bijvoorbeeld aangenomen dat de concentraties van stoffen beneden de onderste bepalingsgrens van de methode log-normaal verdeeld is. Deze verdeling kan ontstaan, doordat vele stoffen voorkomen in niveaus die dichtbij de “detectielimiet” van de bepalingsmethode liggen en daardoor moeilijk te bepalen zijn. De gegevens zijn aan die kant begrensd door de bepalingsmethode.
rekenkundige gemiddelde, wordt dan sterk beïnvloed door een klein aantal hoge waarden. Een dataset is daardoor statistisch scheef verdeeld (meer dan de helft van de waarden uit de meetrees zijn dan kleiner dan het gemiddelde) Hierbij moet worden opgemerkt dat concentraties van stoffen beneden het niveau van de detectielimiet, die wel konden worden geïdentificeerd via massaspectrometrie en gaschromatografie, wel zijn gerapporteerd en niet zijn vervangen door een “< detectielimiet” teken. Ze zijn verwerkt in het rekenkundig gemiddelde van de concentratie. In Duyzer en Vonk (2001) wordt hier uitgebreid aandacht aan besteed. Percentielen geven dan wellicht een beter beeld van de meetrees, waarbij de mediaan, het 50-percentiel, het midden van de meetrees aangeeft, wanneer alle metingen op rangorde zijn gezet.

Een andere manier om het gemiddelde van scheef verdeelde meetreeksen te schatten gebeurt door het logaritme van het cumulatieve percentage van de totale massa van een meetrees van concentraties uit te zetten tegen de concentratie de metingen uit die reeks op log-waarschijnlijkheids papier. Dit liet voor een aantal stoffen zien, dat deze niet log-normaal verdeeld waren. Het schatten van een gemiddelde kon dus niet via log-waarschijnlijkheids plots plaatsvinden.
Bijlage V Atmosferische depositie in de omgeving van de bron

Het doel van het hier gepresenteerde onderzoek was het verkrijgen van een landelijk overzicht van de belasting van Nederland vanuit de atmosfeer. Hoewel depositie dicht bij de bron geen onderdeel was van het huidige onderzoek treedt dit proces uiteraard ook dichtbij de bron op. Op locale schaal, dicht bij bronnen, kan de depositie zelfs veel hoger zijn. Dit wordt geïllustreerd in Figuur V.1 waar de concentratie van een stof is gegeven in de omgeving van de bron. Het gaat hier om een voorbeeld waarbij gerekend is met een standaard emissiebron met een sterkte van 0,01 g/s. Duidelijk is dat de concentratie in lucht sterk afneemt met de afstand tot de bron. De depositie is recht evenredig met de concentratie in lucht en neemt daardoor even snel af. Zo is op tien km afstand van de bron de concentratie al 50 keer zo laag als op een afstand van één kilometer. Dat is een geheel andere schaal dan die van het huidige meetnet. Het huidige meetnet is gericht op het verkrijgen van een landelijk beeld. De meetlocaties zijn daarom ook op die wijze geselecteerd, ver weg van grote bronnen. Voor een orde van grootte: achttien meetstations in heel Nederland (bijna 400 00 km²) maakt de stations representatief op een schaal van bijna 50 bij 50 km. De depositie is in de directe omgeving van bronnen daardoor veel hoger dan het landelijk gemiddelde. De resultaten uit het huidige onderzoek zijn meer representatief voor het landelijk gemiddelde. De kans dat door dit proces hoge concentraties in oppervlaktewater optreden die mogelijk leiden tot effecten is dan ook hoger.

Opvallend is verder dat bijna 20% van de geëmisste hoeveelheid materiaal deponeert binnen één kilometer van de bron. In het hier gegeven voorbeeld is gekozen voor een redelijk goed oplosbare stof. Bij minder goed oplosbare stoffen kan het verloop van de concentratie iets anders zijn en kan een kleinere fractie deponeren. De invloed op het verloop van de concentratie is echter vrij klein. Het verloop van de concentratie met de afstand wordt voornamelijk bepaald door verdunner. De gedeponeerde fractie hangt veel sterker af van de fysisch chemische eigenschappen. Het hier gegeven voorbeeld is ruwweg het maximum. Van minder goed oplosbare stoffen deponeert minder op geringe afstand van de bron.

![Graph](image)

Figuur V.1 De concentratie in lucht van een voorbeeld stof (zwaveldioxide) en de fractie van de geëmisste stof die deponeert, als functie van de afstand tot de bron, bij een veld van 100 bij 100 m bij een bronsterkte van 0,01 g/s.
Bijlage VI Concentraties en deposits in Noord-Holland

1.1 Inleiding

In de provincie Noord-Holland zijn gedurende de looptijd van het project metingen verricht op extra meetstations. In deze bijlage worden de resultaten van de metingen op deze stations nog apart besproken.

1.2 Resultaten

1.2.1 Concentraties en normen

Tabel VI.1, Tabel VI.2, Tabel VI.3, Tabel VI.4, Tabel VI.5 en Tabel VI.6 geven de resultaten van de metingen in de provincie op de locaties Andijk, Anna Paulowna, Aalsmeer en Egmond. De overschrijding van de drinkwaternorm van chloorprofam is hoog op de meetlocaties in Noord-Holland ten opzichte van de andere meetlocaties in Nederland. De gemiddelde concentratie bereikt een waarde van zes keer de drinkwaternorm, terwijl gemiddeld in heel Nederland (incl. Noord-Holland) een factor vier wordt bereikt. Het percentage van de monsters waarin de norm wordt overschreden is het dubbele van het percentage voor heel Nederland (incl. Noord-Holland). Pyrazofos, tolfos-methyl en chloorthalonil overschrijden alleen in Noord-Holland de drinkwaternorm in neerslag (Tabel VI.7).

De concentratie van chloorthalonil werd in 2000 alleen op de meetlocatie Anna Paulowna gemeten en overschreden daar in 90% van de neerslagmonsters het MTR voor oppervlaktewater. De maximale overschrijding was een factor 32! In 2001 werd het MTR voor chloorthalonil in 25% van de monsters overschreden hetgeen overeenkomt met het landelijk gemiddelde. Ook in 2001 werd de maximale overschrijding in Anna Paulowna aangetroffen. Pyrazofos en chloorfenvinfos overschreden alleen in Noord-Holland het MTR in neerslag.
<table>
<thead>
<tr>
<th>Stof</th>
<th>Aangetoond in lucht 2000 (%)</th>
<th>Aangetoond in lucht 2001 (%)</th>
<th>Gemiddelde Concentratie 2000 (ng/m³)</th>
<th>Gemiddelde Concentratie 2001 (ng/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>0</td>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>aldrin</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>atrazin</td>
<td>4</td>
<td>2</td>
<td>0,003</td>
<td>0,000</td>
</tr>
<tr>
<td>bentazon</td>
<td>0</td>
<td>6</td>
<td>0,000</td>
<td>0,009</td>
</tr>
<tr>
<td>bitertanol</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>captan</td>
<td>0</td>
<td>2</td>
<td>0,000</td>
<td>0,012</td>
</tr>
<tr>
<td>chloorenfenviros</td>
<td>2</td>
<td>2</td>
<td>0,002</td>
<td>0,004</td>
</tr>
<tr>
<td>chloorproflam</td>
<td>52</td>
<td>56</td>
<td>1,940</td>
<td>0,714</td>
</tr>
<tr>
<td>chlooryrphis-methyl</td>
<td>21</td>
<td>12</td>
<td>0,003</td>
<td>0,001</td>
</tr>
<tr>
<td>chloorthaloni²</td>
<td>56</td>
<td>34</td>
<td>0,229</td>
<td>0,217</td>
</tr>
<tr>
<td>chloridazon (pyrazon)</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>deltametrin</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>demetone-S-methyl</td>
<td>33</td>
<td>-</td>
<td>0,060</td>
<td>-</td>
</tr>
<tr>
<td>diazinon</td>
<td>2</td>
<td>0</td>
<td>0,002</td>
<td>0,000</td>
</tr>
<tr>
<td>dichlofenil</td>
<td>98</td>
<td>98</td>
<td>1,565</td>
<td>1,071</td>
</tr>
<tr>
<td>dichlorovos</td>
<td>0</td>
<td>6</td>
<td>0,000</td>
<td>0,016</td>
</tr>
<tr>
<td>dicofol</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>dimethoat</td>
<td>0</td>
<td>2</td>
<td>0,000</td>
<td>0,002</td>
</tr>
<tr>
<td>disulfoton</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>DNOC</td>
<td>21</td>
<td>28</td>
<td>0,299</td>
<td>0,302</td>
</tr>
<tr>
<td>endosulfan I</td>
<td>0</td>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>endosulfan II</td>
<td>2</td>
<td>0</td>
<td>0,009</td>
<td>0,000</td>
</tr>
<tr>
<td>endrin</td>
<td>11</td>
<td>-</td>
<td>0,023</td>
<td>-</td>
</tr>
<tr>
<td>epoxiconazol</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>ethofumesaat¹</td>
<td>22</td>
<td>22</td>
<td>0,003</td>
<td>0,040</td>
</tr>
<tr>
<td>Parathion-ethyl</td>
<td>0</td>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>fenitrothion</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>fenthion</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>fluazinam</td>
<td>25</td>
<td>20</td>
<td>0,029</td>
<td>0,015</td>
</tr>
<tr>
<td>fluoroypy²</td>
<td>0</td>
<td>12</td>
<td>0,000</td>
<td>0,036</td>
</tr>
<tr>
<td>fosfamidon</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>heptachlof</td>
<td>0</td>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>heptachlof epoxide</td>
<td>44</td>
<td>-</td>
<td>0,004</td>
<td>-</td>
</tr>
<tr>
<td>heptenofos</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>hexachlo-1,3-butadieen</td>
<td>11</td>
<td>-</td>
<td>0,009</td>
<td>-</td>
</tr>
<tr>
<td>hexachloobenzeen</td>
<td>42</td>
<td>32</td>
<td>0,006</td>
<td>0,010</td>
</tr>
<tr>
<td>isoxafulote</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>kresoxim-methyl¹</td>
<td>33</td>
<td>12</td>
<td>0,017</td>
<td>0,006</td>
</tr>
<tr>
<td>lindan</td>
<td>12</td>
<td>2</td>
<td>0,056</td>
<td>0,003</td>
</tr>
<tr>
<td>malathion</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>2</td>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>mecoprop</td>
<td>2</td>
<td>4</td>
<td>0,000</td>
<td>0,002</td>
</tr>
<tr>
<td>metamiton</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>methiocarb</td>
<td>0</td>
<td>4</td>
<td>0,000</td>
<td>0,001</td>
</tr>
<tr>
<td>methomyl</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>parathion-methyl</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>metolachlof</td>
<td>0</td>
<td>2</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>mevinfos</td>
<td>2</td>
<td>4</td>
<td>0,001</td>
<td>0,006</td>
</tr>
<tr>
<td>o,p′-DDD¹</td>
<td>11</td>
<td>0</td>
<td>0,016</td>
<td>0,000</td>
</tr>
<tr>
<td>o,p′-DDE</td>
<td>11</td>
<td>-</td>
<td>0,007</td>
<td>-</td>
</tr>
</tbody>
</table>

De gemiddelde concentratie over alle monsters is ook het percentage van de monsters, waarin de stof is aangetroffen, gegeven. Deze stof is niet meer bepaald, maar niet aangetroffen.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Aangetoond in lucht 2000 (%)</th>
<th>Aangetoond in lucht 2001 (%)</th>
<th>Gemiddelde Concentratie 2000 (ng/m³)</th>
<th>Gemiddelde Concentratie 2001 (ng/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p,p'-DDT³</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PCP</td>
<td>79</td>
<td>74</td>
<td>0,055</td>
<td>0,067</td>
</tr>
<tr>
<td>pentachloorbenzeen²</td>
<td>33</td>
<td>26</td>
<td>0,010</td>
<td>0,004</td>
</tr>
<tr>
<td>pirimicarb</td>
<td>0</td>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>pirimifos-methyl</td>
<td>19</td>
<td>10</td>
<td>0,019</td>
<td>0,796</td>
</tr>
<tr>
<td>prochloraz</td>
<td>0</td>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>procyridon</td>
<td>44</td>
<td>22</td>
<td>0,055</td>
<td>0,025</td>
</tr>
<tr>
<td>propachloor</td>
<td>40</td>
<td>28</td>
<td>0,436</td>
<td>0,158</td>
</tr>
<tr>
<td>propoxur</td>
<td>2</td>
<td>0</td>
<td>0,002</td>
<td>0,000</td>
</tr>
<tr>
<td>pyrazofos</td>
<td>4</td>
<td>0</td>
<td>0,003</td>
<td>0,000</td>
</tr>
<tr>
<td>simazin</td>
<td>8</td>
<td>4</td>
<td>0,019</td>
<td>0,014</td>
</tr>
<tr>
<td>telodrin</td>
<td>11</td>
<td>-</td>
<td>0,003</td>
<td>-</td>
</tr>
<tr>
<td>terbutylazine³</td>
<td>0</td>
<td>6</td>
<td>0,000</td>
<td>0,018</td>
</tr>
<tr>
<td>tetrabromobisfenol A¹</td>
<td>44</td>
<td>22</td>
<td>0,000</td>
<td>0,005</td>
</tr>
<tr>
<td>tolclofos-methyl</td>
<td>33</td>
<td>30</td>
<td>0,161</td>
<td>0,247</td>
</tr>
<tr>
<td>triadimenol</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>trnallaat</td>
<td>75</td>
<td>60</td>
<td>0,316</td>
<td>0,131</td>
</tr>
<tr>
<td>triazofos</td>
<td>0</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
</tr>
<tr>
<td>trifluralin</td>
<td>81</td>
<td>92</td>
<td>0,193</td>
<td>0,328</td>
</tr>
<tr>
<td>vinclozolin¹</td>
<td>89</td>
<td>36</td>
<td>0,321</td>
<td>0,171</td>
</tr>
</tbody>
</table>

³ Stoffen die in 2000 op vier locaties zijn bepaald en in 2001 op alle locaties.
- Stoffen die in het jaar 2001 niet meer zijn bepaald.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Aangetoond in neerslag 2000 (%)</th>
<th>Aangetoond in neerslag 2001 (%)</th>
<th>Gemiddelde Concentratie 2000 (ng/l)</th>
<th>Gemiddelde Concentratie 2001 (ng/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>10</td>
<td>33</td>
<td>0,9</td>
<td>2,0</td>
</tr>
<tr>
<td>aldrin</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>atrazin</td>
<td>21</td>
<td>23</td>
<td>10,1</td>
<td>13,8</td>
</tr>
<tr>
<td>bentazon</td>
<td>2</td>
<td>12</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>bitertanol</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>captan</td>
<td>11</td>
<td>8</td>
<td>4,9</td>
<td>22,7</td>
</tr>
<tr>
<td>chloofervinfos</td>
<td>4</td>
<td>4</td>
<td>0,5</td>
<td>1,0</td>
</tr>
<tr>
<td>chloorprofam</td>
<td>96</td>
<td>87</td>
<td>250,8</td>
<td>102,2</td>
</tr>
<tr>
<td>chloorylphos-methyl</td>
<td>52</td>
<td>38</td>
<td>0,7</td>
<td>0,2</td>
</tr>
<tr>
<td>chloothalonil¹</td>
<td>100</td>
<td>60</td>
<td>52,6</td>
<td>17,0</td>
</tr>
<tr>
<td>chloridazon (pyrazon)</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>deltametrin</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>demetone-S-methyl</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>diazinon</td>
<td>4</td>
<td>12</td>
<td>0,8</td>
<td>1,0</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>100</td>
<td>88</td>
<td>17,8</td>
<td>13,7</td>
</tr>
<tr>
<td>dichloorvos</td>
<td>23</td>
<td>27</td>
<td>3,2</td>
<td>3,3</td>
</tr>
<tr>
<td>dicofol</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>dimethaolat</td>
<td>8</td>
<td>0</td>
<td>8,4</td>
<td>0,0</td>
</tr>
<tr>
<td>disulfoton</td>
<td>0</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>DNOC</td>
<td>100</td>
<td>96</td>
<td>1168,4</td>
<td>451,7</td>
</tr>
<tr>
<td>Stof</td>
<td>Aangetoond in neerslag 2000 (%)</td>
<td>Aangetoond in neerslag 2001 (%)</td>
<td>Gemiddelde Concentratie 2000 (ng/l)</td>
<td>Gemiddelde Concentratie 2001 (ng/l)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>endosulfan I</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>endosulfan II</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>endrin</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>epoxiconazol</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>ethofumesaat¹</td>
<td>40</td>
<td>12</td>
<td>5.1</td>
<td>9.1</td>
</tr>
<tr>
<td>parathion-ethyl</td>
<td>2</td>
<td>0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>fenitrothion</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>fenithion</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>fluazinam</td>
<td>48</td>
<td>40</td>
<td>6.3</td>
<td>15.7</td>
</tr>
<tr>
<td>fluoxypry²</td>
<td>40</td>
<td>4</td>
<td>12.9</td>
<td>0.2</td>
</tr>
<tr>
<td>fosfamidon</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>heptachlor</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>heptachlor epoxide</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>heptenofos</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>hexachlороbutadien</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>hexachloorbenzeen</td>
<td>94</td>
<td>79</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>isoxxalotride</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>kresoxim-methyl¹</td>
<td>50</td>
<td>44</td>
<td>13.4</td>
<td>8.7</td>
</tr>
<tr>
<td>lindaa</td>
<td>31</td>
<td>31</td>
<td>16.8</td>
<td>15.1</td>
</tr>
<tr>
<td>malathion</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>63</td>
<td>52</td>
<td>10.9</td>
<td>7.8</td>
</tr>
<tr>
<td>mecoprop</td>
<td>42</td>
<td>31</td>
<td>7.4</td>
<td>5.5</td>
</tr>
<tr>
<td>metamitron</td>
<td>10</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>methiocarb</td>
<td>7</td>
<td>12</td>
<td>0.1</td>
<td>2.8</td>
</tr>
<tr>
<td>methomyl</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>parathion-methyl</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>metolachloor</td>
<td>21</td>
<td>15</td>
<td>5.7</td>
<td>2.0</td>
</tr>
<tr>
<td>mevinfos</td>
<td>2</td>
<td>8</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>o,p'-DDD¹</td>
<td>10</td>
<td>2</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>o,p'-DDE</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>p,p'-DDT¹</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PCP</td>
<td>98</td>
<td>88</td>
<td>9.4</td>
<td>5.0</td>
</tr>
<tr>
<td>pentachloorbenzeen²</td>
<td>90</td>
<td>81</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>pirimicarb</td>
<td>0</td>
<td>6</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>pirimicos-methyl</td>
<td>0</td>
<td>8</td>
<td>0.0</td>
<td>10.2</td>
</tr>
<tr>
<td>prochloraz</td>
<td>2</td>
<td>2</td>
<td>1.1</td>
<td>2.9</td>
</tr>
<tr>
<td>procymidon</td>
<td>81</td>
<td>69</td>
<td>17.0</td>
<td>6.8</td>
</tr>
<tr>
<td>propachlor</td>
<td>54</td>
<td>52</td>
<td>126.4</td>
<td>62.0</td>
</tr>
<tr>
<td>propoxur</td>
<td>21</td>
<td>12</td>
<td>2.6</td>
<td>0.7</td>
</tr>
<tr>
<td>pyrazofos</td>
<td>4</td>
<td>0</td>
<td>6.2</td>
<td>0.0</td>
</tr>
<tr>
<td>simazin</td>
<td>2</td>
<td>4</td>
<td>0.5</td>
<td>1.3</td>
</tr>
<tr>
<td>telodrin</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>terbutylazine¹</td>
<td>40</td>
<td>29</td>
<td>3.1</td>
<td>10.0</td>
</tr>
<tr>
<td>tetrabromobisfenol A¹</td>
<td>50</td>
<td>71</td>
<td>0.0</td>
<td>4.1</td>
</tr>
<tr>
<td>tolclofos-methyl</td>
<td>19</td>
<td>29</td>
<td>4.7</td>
<td>8.3</td>
</tr>
<tr>
<td>triadimenol</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>triallaat</td>
<td>79</td>
<td>50</td>
<td>23.0</td>
<td>3.2</td>
</tr>
<tr>
<td>triazofos</td>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>trifluralin</td>
<td>73</td>
<td>79</td>
<td>2.6</td>
<td>4.4</td>
</tr>
<tr>
<td>vinlozolin¹</td>
<td>100</td>
<td>83</td>
<td>45.7</td>
<td>18.9</td>
</tr>
</tbody>
</table>
Tabel VI.3 Overzicht van het voorkomen van PAK in lucht monsters in Noord-Holland voor de jaren 2000 en 2001. Naast de gemiddelde concentratie over alle monsters is ook het percentage van de monsters, waarin de stof is aangetroffen, gegeven.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Aangetoond in lucht 2000 (%)</th>
<th>Aangetoond in lucht 2001 (%)</th>
<th>Gemiddelde Concentratie 2000 (ng/m³)</th>
<th>Gemiddelde Concentratie 2001 (ng/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acenaafteen</td>
<td>100</td>
<td>97</td>
<td>2,293</td>
<td>1,747</td>
</tr>
<tr>
<td>acenaftyleen</td>
<td>50</td>
<td>55</td>
<td>0,083</td>
<td>0,124</td>
</tr>
<tr>
<td>antraceen</td>
<td>90</td>
<td>61</td>
<td>0,137</td>
<td>0,087</td>
</tr>
<tr>
<td>benzo[a]antraceen</td>
<td>73</td>
<td>29</td>
<td>0,027</td>
<td>0,008</td>
</tr>
<tr>
<td>benzo[a]pyrein</td>
<td>73</td>
<td>71</td>
<td>0,036</td>
<td>0,031</td>
</tr>
<tr>
<td>benzo[b]fluoranteen</td>
<td>83</td>
<td>89</td>
<td>0,080</td>
<td>0,139</td>
</tr>
<tr>
<td>benzo[g,h,i]pyrein</td>
<td>88</td>
<td>82</td>
<td>0,033</td>
<td>0,050</td>
</tr>
<tr>
<td>benzo[k]fluoranteen</td>
<td>83</td>
<td>92</td>
<td>0,052</td>
<td>0,095</td>
</tr>
<tr>
<td>chryseel</td>
<td>73</td>
<td>32</td>
<td>0,104</td>
<td>0,016</td>
</tr>
<tr>
<td>dibenz[a,h]-antraceen</td>
<td>63</td>
<td>50</td>
<td>0,004</td>
<td>0,008</td>
</tr>
<tr>
<td>fenantrine</td>
<td>100</td>
<td>97</td>
<td>6,522</td>
<td>5,841</td>
</tr>
<tr>
<td>fluoranteen</td>
<td>96</td>
<td>97</td>
<td>1,867</td>
<td>1,822</td>
</tr>
<tr>
<td>fluoreen</td>
<td>100</td>
<td>97</td>
<td>3,591</td>
<td>2,855</td>
</tr>
<tr>
<td>indeno[1,2,3-cd]pyrein</td>
<td>79</td>
<td>76</td>
<td>0,028</td>
<td>0,047</td>
</tr>
<tr>
<td>naftaleen</td>
<td>100</td>
<td>100</td>
<td>12,769</td>
<td>12,994</td>
</tr>
<tr>
<td>pyrein</td>
<td>92</td>
<td>92</td>
<td>0,775</td>
<td>0,728</td>
</tr>
</tbody>
</table>

Tabel VI.4 Overzicht van het voorkomen van PCB’s in lucht monsters in Noord-Holland voor de jaren 2000 en 2001. Naast de gemiddelde concentratie over alle monsters is ook het percentage van de monsters, waarin de stof is aangetroffen, gegeven (0: de stof is wel bepaald, maar niet aangetroffen).

<table>
<thead>
<tr>
<th>Stof</th>
<th>Aangetoond in lucht 2000 (%)</th>
<th>Aangetoond in lucht 2001 (%)</th>
<th>Gemiddelde Concentratie 2000 (ng/m³)</th>
<th>Gemiddelde Concentratie 2001 (ng/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-101</td>
<td>38</td>
<td>24</td>
<td>0,004</td>
<td>0,003</td>
</tr>
<tr>
<td>PCB-118</td>
<td>0</td>
<td>5</td>
<td>0,0004</td>
<td>0,000</td>
</tr>
<tr>
<td>PCB-138</td>
<td>15</td>
<td>3</td>
<td>0,0002</td>
<td>0,001</td>
</tr>
<tr>
<td>PCB-153</td>
<td>25</td>
<td>5</td>
<td>0,0001</td>
<td>0,001</td>
</tr>
<tr>
<td>PCB-180</td>
<td>12</td>
<td>0</td>
<td>0,000</td>
<td>0,0003</td>
</tr>
<tr>
<td>PCB-20</td>
<td>19</td>
<td>18</td>
<td>0,007</td>
<td>0,010</td>
</tr>
<tr>
<td>PCB-28</td>
<td>17</td>
<td>18</td>
<td>0,004</td>
<td>0,009</td>
</tr>
<tr>
<td>PCB-35</td>
<td>2</td>
<td>8</td>
<td>0,002</td>
<td>0,001</td>
</tr>
<tr>
<td>PCB-52</td>
<td>19</td>
<td>26</td>
<td>0,007</td>
<td>0,003</td>
</tr>
<tr>
<td>PCB-8</td>
<td>21</td>
<td>21</td>
<td>0,005</td>
<td>0,003</td>
</tr>
</tbody>
</table>
Tabel VI.5
Overzicht van het voorkomen van PAK in neerslagmonsters in Noord-Holland voor de jaren 2000 en 2001. Naast de gemiddelde concentratie over alle monsters is ook het percentage van de monsters, waarin de stof is aangetroffen, gegeven.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Aangetoond in neerslag 2000 (%)</th>
<th>Aangetoond in neerslag 2001 (%)</th>
<th>Gemiddelde Concentratie 2000 (ng/l)</th>
<th>Gemiddelde Concentratie 2001 (ng/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acenafteen</td>
<td>98</td>
<td>95</td>
<td>7,9</td>
<td>6,0</td>
</tr>
<tr>
<td>acenaftyleen</td>
<td>31</td>
<td>50</td>
<td>3,0</td>
<td>4,1</td>
</tr>
<tr>
<td>antraceen</td>
<td>100</td>
<td>95</td>
<td>8,5</td>
<td>7,1</td>
</tr>
<tr>
<td>benzo[a]antraceen</td>
<td>100</td>
<td>100</td>
<td>11,8</td>
<td>11,6</td>
</tr>
<tr>
<td>benzo[a]pyreene</td>
<td>88</td>
<td>98</td>
<td>18,2</td>
<td>16,5</td>
</tr>
<tr>
<td>benzo[b]fluoranteen</td>
<td>100</td>
<td>100</td>
<td>39,1</td>
<td>30,1</td>
</tr>
<tr>
<td>benzo[g,h,i]pyreene</td>
<td>98</td>
<td>95</td>
<td>18,3</td>
<td>13,7</td>
</tr>
<tr>
<td>benzo[k]fluoranteen</td>
<td>100</td>
<td>100</td>
<td>23,0</td>
<td>22,8</td>
</tr>
<tr>
<td>chryseen</td>
<td>100</td>
<td>100</td>
<td>34,0</td>
<td>31,2</td>
</tr>
<tr>
<td>dibenz[a,h]-antraceen</td>
<td>79</td>
<td>88</td>
<td>2,9</td>
<td>3,7</td>
</tr>
<tr>
<td>fenantreen</td>
<td>100</td>
<td>100</td>
<td>96,4</td>
<td>95,3</td>
</tr>
<tr>
<td>fluoranteen</td>
<td>100</td>
<td>100</td>
<td>94,2</td>
<td>93,6</td>
</tr>
<tr>
<td>fluoreen</td>
<td>100</td>
<td>100</td>
<td>16,3</td>
<td>14,5</td>
</tr>
<tr>
<td>indenol[1,2,3-cd]pyreene</td>
<td>92</td>
<td>95</td>
<td>16,0</td>
<td>12,5</td>
</tr>
<tr>
<td>naffalene</td>
<td>100</td>
<td>100</td>
<td>73,3</td>
<td>41,0</td>
</tr>
<tr>
<td>pyreene</td>
<td>100</td>
<td>98</td>
<td>52,1</td>
<td>58,1</td>
</tr>
</tbody>
</table>

Tabel VI.6
Overzicht van het voorkomen van PCB’s in neerslagmonsters in Nederland voor de jaren 2000 en 2001. Naast de gemiddelde concentratie over alle monsters is ook het gemiddelde van alleen die monsters, waarin de stof is aangetroffen, gegeven.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Aangetoond in neerslag 2000 (%)</th>
<th>Aangetoond in neerslag 2001 (%)</th>
<th>Gemiddelde Concentratie 2000 (ng/l)</th>
<th>Gemiddelde Concentratie 2001 (ng/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-101</td>
<td>50</td>
<td>15</td>
<td>1,4</td>
<td>0,1</td>
</tr>
<tr>
<td>PCB-118</td>
<td>33</td>
<td>3</td>
<td>0,4</td>
<td>0,02</td>
</tr>
<tr>
<td>PCB-138</td>
<td>46</td>
<td>8</td>
<td>0,4</td>
<td>0,2</td>
</tr>
<tr>
<td>PCB-153</td>
<td>73</td>
<td>33</td>
<td>0,5</td>
<td>0,2</td>
</tr>
<tr>
<td>PCB-180</td>
<td>13</td>
<td>5</td>
<td>0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>PCB-20</td>
<td>42</td>
<td>45</td>
<td>0,9</td>
<td>0,6</td>
</tr>
<tr>
<td>PCB-28</td>
<td>37</td>
<td>5</td>
<td>1,3</td>
<td>0,1</td>
</tr>
<tr>
<td>PCB-35</td>
<td>6</td>
<td>5</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>PCB-52</td>
<td>31</td>
<td>23</td>
<td>2,0</td>
<td>0,4</td>
</tr>
<tr>
<td>PCB-8</td>
<td>10</td>
<td>0</td>
<td>0,1</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Tabel VI.7 Stoffen die de drinkwaternorm in neerslag overschrijden (100 ng/l), op de meetlocaties in Noord-Holland in 2000 en 2001. Weergegeven zijn het percentage monsters dat de norm overschrijdt en de gemiddelde concentratie in die monsters.

<table>
<thead>
<tr>
<th>Stof</th>
<th>% monsters > drinkwaternorm 2000</th>
<th>% monsters > drinkwaternorm 2001</th>
<th>Gemiddelde concentratie van monster boven de drinkwaternorm 2000</th>
<th>Gemiddelde concentratie van monster boven de drinkwaternorm 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungiciden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>captan</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>999</td>
</tr>
<tr>
<td>chloorthalonil</td>
<td>10</td>
<td>4</td>
<td>325</td>
<td>190</td>
</tr>
<tr>
<td>fluazinam</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>prochloraz</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>152</td>
</tr>
<tr>
<td>procymidon</td>
<td>2</td>
<td>0</td>
<td>245</td>
<td>0</td>
</tr>
<tr>
<td>pyrazofos</td>
<td>2</td>
<td>0</td>
<td>320</td>
<td>0</td>
</tr>
<tr>
<td>tolclofos-methyl</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>105</td>
</tr>
<tr>
<td>vinclozolin</td>
<td>2</td>
<td>4</td>
<td>174</td>
<td>146</td>
</tr>
<tr>
<td>Herbiciden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atrazine</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>118</td>
</tr>
<tr>
<td>chloorprofam</td>
<td>37</td>
<td>33</td>
<td>638</td>
<td>252</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>2</td>
<td>2</td>
<td>259</td>
<td>167</td>
</tr>
<tr>
<td>ethofumesaat</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>323</td>
</tr>
<tr>
<td>propachloor</td>
<td>29</td>
<td>21</td>
<td>407</td>
<td>252</td>
</tr>
<tr>
<td>terbutylazine</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Insecticiden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethoat</td>
<td>6</td>
<td>0</td>
<td>146</td>
<td>0</td>
</tr>
<tr>
<td>lindaan</td>
<td>6</td>
<td>2</td>
<td>117</td>
<td>341</td>
</tr>
<tr>
<td>pirimifos-methyl</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>132</td>
</tr>
<tr>
<td>Overig</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNOC</td>
<td>100</td>
<td>96</td>
<td>1168</td>
<td>470</td>
</tr>
<tr>
<td>PCP</td>
<td>2</td>
<td>0</td>
<td>165</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stof</th>
<th>Toe-</th>
<th>MTR</th>
<th>% aange-</th>
<th>Concentratie</th>
<th>% > MTR</th>
<th>% aange-</th>
<th>Concentratie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>passing</td>
<td></td>
<td>-toond in</td>
<td>in neerslag</td>
<td>2000</td>
<td>in neerslag</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td>(ng/l)</td>
<td></td>
<td>2000</td>
<td>(ng/l)</td>
<td></td>
<td>2001</td>
<td>(ng/l)</td>
</tr>
<tr>
<td>chloorthalazol</td>
<td>F</td>
<td>10</td>
<td>100</td>
<td>52.6</td>
<td>90</td>
<td>60</td>
<td>17.0</td>
</tr>
<tr>
<td>captan</td>
<td>F</td>
<td>110</td>
<td>11</td>
<td>4.9</td>
<td>0</td>
<td>8</td>
<td>22.7</td>
</tr>
<tr>
<td>pyrazosel</td>
<td>F</td>
<td>40</td>
<td>4</td>
<td>6.2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>propachlor</td>
<td>H</td>
<td>1300</td>
<td>54</td>
<td>128.4</td>
<td>2</td>
<td>52</td>
<td>62.0</td>
</tr>
<tr>
<td>chlooreffeminfos</td>
<td>I</td>
<td>2</td>
<td>4</td>
<td>0.5</td>
<td>4</td>
<td>4</td>
<td>1.0</td>
</tr>
<tr>
<td>chloopyrphos-methyl</td>
<td>I</td>
<td>3</td>
<td>52</td>
<td>0.7</td>
<td>6</td>
<td>38</td>
<td>0.2</td>
</tr>
<tr>
<td>dichlofovitros</td>
<td>I</td>
<td>0.7</td>
<td>23</td>
<td>3.2</td>
<td>23</td>
<td>27</td>
<td>3.3</td>
</tr>
<tr>
<td>parathion-ethyl</td>
<td>I</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>mevinfos</td>
<td>I</td>
<td>2</td>
<td>2</td>
<td>0.3</td>
<td>2</td>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>propoxur</td>
<td>I</td>
<td>10</td>
<td>21</td>
<td>2.6</td>
<td>4</td>
<td>12</td>
<td>0.7</td>
</tr>
<tr>
<td>methiocarb</td>
<td>I en B</td>
<td>16</td>
<td>7</td>
<td>0.1</td>
<td>0</td>
<td>12</td>
<td>2.8</td>
</tr>
<tr>
<td>pyriminos-methyl</td>
<td>I/A</td>
<td>2</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>8</td>
<td>10.2</td>
</tr>
<tr>
<td>benzo(a)pyrene</td>
<td>PAK</td>
<td>30</td>
<td>100</td>
<td>11.8</td>
<td>4</td>
<td>100</td>
<td>11.6</td>
</tr>
<tr>
<td>fenantrette</td>
<td>PAK</td>
<td>300</td>
<td>100</td>
<td>96.4</td>
<td>4</td>
<td>100</td>
<td>95.3</td>
</tr>
<tr>
<td>fluroantrene</td>
<td>PAK</td>
<td>500</td>
<td>100</td>
<td>94.2</td>
<td>2</td>
<td>100</td>
<td>93.8</td>
</tr>
</tbody>
</table>

1.2.2 Vrachten van atmosferische depositie in de provincie Noord-Holland

In 2001 werd voor één derde van de onderzochte stoffen de maximale depositie aangetroffen op een meetstation in de provincie. Dit is iets meer dan verwacht zou mogen worden aan de hand van de verdeling van de meetstations. Vier van de in totaal 18 meetstations liggen in de provincie. Bij een evenredige verdeling van de maxima over het land zou dus slechts 4/18 (22%) van de maxima in de provincie vallen. Deze geringe verhoging van dit percentage wordt waarschijnlijk veroorzaakt door de toevallige ligging van de meetstations ten opzichte van bronnen en de samenstelling van het analysepakket.
<table>
<thead>
<tr>
<th>Stof</th>
<th>Nederland gemiddelde</th>
<th>Gemiddelde Noord-Holland</th>
<th>Aalsmeer</th>
<th>Andijk</th>
<th>Anna Paulowna</th>
<th>Egmond</th>
<th>Locatie maximum Nederland</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>0,004</td>
<td>0,005</td>
<td>0,003</td>
<td>0,008</td>
<td>0,004</td>
<td>0,003</td>
<td>KE</td>
</tr>
<tr>
<td>atrazine</td>
<td>0,09</td>
<td>0,07</td>
<td>0,05</td>
<td>0,08</td>
<td>0,07</td>
<td>0,08</td>
<td>WY</td>
</tr>
<tr>
<td>bentazon</td>
<td>0,01</td>
<td>0,03</td>
<td>0,00</td>
<td>0,01</td>
<td>0,00</td>
<td>0,00</td>
<td>ZI</td>
</tr>
<tr>
<td>captan</td>
<td>0,06</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
<td>0,03</td>
<td>WY</td>
</tr>
<tr>
<td>chloalkyfenvinfos</td>
<td>0,003</td>
<td>0,006</td>
<td>0,00</td>
<td>0,002</td>
<td>0,00</td>
<td>0,02</td>
<td>EG</td>
</tr>
<tr>
<td>chloprprofam</td>
<td>1,99</td>
<td>4,43</td>
<td>0,53</td>
<td>2,93</td>
<td>9,81</td>
<td>4,43</td>
<td>AP</td>
</tr>
<tr>
<td>chloorpyrphos-methyl</td>
<td>0,005</td>
<td>0,008</td>
<td>0,001</td>
<td>0,004</td>
<td>0,018</td>
<td>0,010</td>
<td>ZI</td>
</tr>
<tr>
<td>chloorthalonil</td>
<td>0,29</td>
<td>0,32</td>
<td>-</td>
<td>-</td>
<td>0,32</td>
<td>-</td>
<td>VE</td>
</tr>
<tr>
<td>diazinon</td>
<td>0,005</td>
<td>0,01</td>
<td>0,03</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>AL</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>2,45</td>
<td>2,51</td>
<td>2,25</td>
<td>2,39</td>
<td>4,01</td>
<td>1,39</td>
<td>YE</td>
</tr>
<tr>
<td>dichlobrors</td>
<td>0,06</td>
<td>0,03</td>
<td>0,05</td>
<td>0,03</td>
<td>0,01</td>
<td>0,02</td>
<td>GP</td>
</tr>
<tr>
<td>dimethoat</td>
<td>0,02</td>
<td>0,07</td>
<td>0,08</td>
<td>0,11</td>
<td>0,00</td>
<td>0,07</td>
<td>AN</td>
</tr>
<tr>
<td>DNOC</td>
<td>8,56</td>
<td>9,08</td>
<td>10,09</td>
<td>8,88</td>
<td>8,79</td>
<td>8,54</td>
<td>SP</td>
</tr>
<tr>
<td>endosulfan II</td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,00</td>
<td>0,00</td>
<td>0,04</td>
<td>GP</td>
</tr>
<tr>
<td>epoxiconazol</td>
<td>0,02</td>
<td>0,00</td>
<td>-</td>
<td>-</td>
<td>0,00</td>
<td>-</td>
<td>GP</td>
</tr>
<tr>
<td>ethofumesaat</td>
<td>0,04</td>
<td>0,04</td>
<td>-</td>
<td>-</td>
<td>0,04</td>
<td>-</td>
<td>GP</td>
</tr>
<tr>
<td>fluazinam</td>
<td>0,11</td>
<td>0,08</td>
<td>0,17</td>
<td>0,08</td>
<td>0,05</td>
<td>0,03</td>
<td>YE</td>
</tr>
<tr>
<td>fluoroxypry</td>
<td>0,07</td>
<td>0,10</td>
<td>-</td>
<td>-</td>
<td>0,10</td>
<td>-</td>
<td>GP</td>
</tr>
<tr>
<td>heptachloor epoxide</td>
<td>0,007</td>
<td>0,005</td>
<td>-</td>
<td>-</td>
<td>0,005</td>
<td>-</td>
<td>GP</td>
</tr>
<tr>
<td>hexachloorenzen</td>
<td>0,01</td>
<td>0,01</td>
<td>0,003</td>
<td>0,02</td>
<td>0,02</td>
<td>0,01</td>
<td>AP</td>
</tr>
<tr>
<td>kresoxim-metyl</td>
<td>0,04</td>
<td>0,09</td>
<td>-</td>
<td>-</td>
<td>0,09</td>
<td>-</td>
<td>AP</td>
</tr>
<tr>
<td>lindaa</td>
<td>0,14</td>
<td>0,18</td>
<td>0,22</td>
<td>0,28</td>
<td>0,08</td>
<td>0,12</td>
<td>WY</td>
</tr>
<tr>
<td>MCPA</td>
<td>0,06</td>
<td>0,06</td>
<td>0,07</td>
<td>0,05</td>
<td>0,07</td>
<td>0,06</td>
<td>YE</td>
</tr>
<tr>
<td>mecoprop</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
<td>YE</td>
</tr>
<tr>
<td>methiocarb</td>
<td>0,0002</td>
<td>0,001</td>
<td>0,004</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>AL</td>
</tr>
<tr>
<td>metolachlooil</td>
<td>0,08</td>
<td>0,04</td>
<td>0,02</td>
<td>0,07</td>
<td>0,03</td>
<td>0,05</td>
<td>WY</td>
</tr>
<tr>
<td>mevinos</td>
<td>0,007</td>
<td>0,003</td>
<td>0,000</td>
<td>0,000</td>
<td>0,007</td>
<td>0,005</td>
<td>SP</td>
</tr>
<tr>
<td>o,p'-DDD</td>
<td>0,03</td>
<td>0,02</td>
<td>-</td>
<td>-</td>
<td>0,02</td>
<td>-</td>
<td>GP</td>
</tr>
<tr>
<td>PCP</td>
<td>0,14</td>
<td>0,13</td>
<td>0,13</td>
<td>0,13</td>
<td>0,13</td>
<td>0,13</td>
<td>ST</td>
</tr>
<tr>
<td>pentachloorenzen</td>
<td>0,002</td>
<td>0,01</td>
<td>-</td>
<td>-</td>
<td>0,01</td>
<td>-</td>
<td>AP</td>
</tr>
<tr>
<td>pirimicarb</td>
<td>0,002</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>SP</td>
</tr>
<tr>
<td>pirimifos-methyl</td>
<td>0,016</td>
<td>0,024</td>
<td>0,003</td>
<td>0,002</td>
<td>0,083</td>
<td>0,007</td>
<td>AP</td>
</tr>
<tr>
<td>prochloraz</td>
<td>0,01</td>
<td>0,01</td>
<td>0,00</td>
<td>0,02</td>
<td>0,00</td>
<td>0,00</td>
<td>NO</td>
</tr>
<tr>
<td>procydizom</td>
<td>0,09</td>
<td>0,16</td>
<td>0,06</td>
<td>0,15</td>
<td>0,19</td>
<td>0,28</td>
<td>ZI</td>
</tr>
<tr>
<td>propachlooor</td>
<td>1,12</td>
<td>1,30</td>
<td>0,76</td>
<td>2,01</td>
<td>1,78</td>
<td>0,64</td>
<td>KE</td>
</tr>
<tr>
<td>propoxur</td>
<td>0,01</td>
<td>0,02</td>
<td>0,03</td>
<td>0,03</td>
<td>0,003</td>
<td>0,002</td>
<td>AN</td>
</tr>
<tr>
<td>pyrazofos</td>
<td>0,02</td>
<td>0,03</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,13</td>
<td>EG</td>
</tr>
<tr>
<td>simazine</td>
<td>0,01</td>
<td>0,03</td>
<td>0,07</td>
<td>0,03</td>
<td>0,02</td>
<td>0,00</td>
<td>AL</td>
</tr>
<tr>
<td>terbutylazine</td>
<td>0,05</td>
<td>0,02</td>
<td>-</td>
<td>-</td>
<td>0,02</td>
<td>-</td>
<td>GP</td>
</tr>
<tr>
<td>tetrabromobisfenol A</td>
<td>0,0001</td>
<td>0,0001</td>
<td>-</td>
<td>-</td>
<td>0,0001</td>
<td>-</td>
<td>DE</td>
</tr>
<tr>
<td>tolclofos-methyl</td>
<td>0,05</td>
<td>0,12</td>
<td>0,00</td>
<td>0,03</td>
<td>0,37</td>
<td>0,06</td>
<td>ZI</td>
</tr>
<tr>
<td>triallaat</td>
<td>0,72</td>
<td>0,63</td>
<td>0,56</td>
<td>0,67</td>
<td>0,66</td>
<td>0,61</td>
<td>KE</td>
</tr>
<tr>
<td>trifluralin</td>
<td>0,21</td>
<td>0,24</td>
<td>0,28</td>
<td>0,21</td>
<td>0,25</td>
<td>0,20</td>
<td>ZI</td>
</tr>
<tr>
<td>vinclozolin</td>
<td>0,28</td>
<td>0,71</td>
<td>-</td>
<td>-</td>
<td>0,71</td>
<td>-</td>
<td>AP</td>
</tr>
</tbody>
</table>
Tabel VI.10 De totale atmosferische depositie van pesticiden naar het oppervlaktewater (g/ha/jr) in het jaar 2001.
De gemiddelde depositie over Nederland, over Noord-Holland en de depositie naar de vier meetlocaties in Noord-Holland zijn weergegeven. De betrouwbaarheid van de vet gedrukte stoffen is goed.
Van de andere is de betrouwbaarheid laag (zie ook tekst). De scheef gedrukte “0” betekent dat de stof niet is aangetroffen.

<table>
<thead>
<tr>
<th>Stoffen</th>
<th>Nederlands gemid-</th>
<th>Gemid-</th>
<th>Aalsmeer</th>
<th>Andijk</th>
<th>Anna Paulowna</th>
<th>Egmond</th>
<th>Locatie maximum Nederland</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>delde</td>
<td>delde Noord-Holland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,03</td>
<td>0,01</td>
<td>AP</td>
</tr>
<tr>
<td>atrazine</td>
<td>0,09</td>
<td>0,07</td>
<td>0,11</td>
<td>0,06</td>
<td>0,05</td>
<td>0,06</td>
<td>YE</td>
</tr>
<tr>
<td>bentazon</td>
<td>0,03</td>
<td>0,02</td>
<td>0,002</td>
<td>0,020</td>
<td>0,008</td>
<td>0,037</td>
<td>KE</td>
</tr>
<tr>
<td>captan</td>
<td>0,31</td>
<td>0,36</td>
<td>1,25</td>
<td>0,00</td>
<td>0,12</td>
<td>0,08</td>
<td>AL</td>
</tr>
<tr>
<td>chloorfenvinfos</td>
<td>0,002</td>
<td>0,01</td>
<td>0,00</td>
<td>0,00</td>
<td>0,01</td>
<td>0,03</td>
<td>EG</td>
</tr>
<tr>
<td>chloorprofam</td>
<td>1,04</td>
<td>1,78</td>
<td>0,39</td>
<td>1,55</td>
<td>2,71</td>
<td>2,45</td>
<td>ZI</td>
</tr>
<tr>
<td>chloorpyriphos-methyl</td>
<td>0,002</td>
<td>0,003</td>
<td>0,001</td>
<td>0,002</td>
<td>0,006</td>
<td>0,002</td>
<td>KE</td>
</tr>
<tr>
<td>chloorthaline</td>
<td>0,14</td>
<td>0,18</td>
<td>0,11</td>
<td>0,17</td>
<td>0,36</td>
<td>0,09</td>
<td>AP</td>
</tr>
<tr>
<td>diazinon</td>
<td>0,003</td>
<td>0,01</td>
<td>0,01</td>
<td>0,03</td>
<td>0,01</td>
<td>0,00</td>
<td>AN</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>1,59</td>
<td>1,75</td>
<td>1,81</td>
<td>2,06</td>
<td>2,05</td>
<td>1,07</td>
<td>KE</td>
</tr>
<tr>
<td>dichlorovos</td>
<td>0,07</td>
<td>0,05</td>
<td>0,08</td>
<td>0,10</td>
<td>0,03</td>
<td>0,01</td>
<td>DE</td>
</tr>
<tr>
<td>dimethoat</td>
<td>0,01</td>
<td>0,003</td>
<td>0,00</td>
<td>0,01</td>
<td>0,00</td>
<td>0,00</td>
<td>WY</td>
</tr>
<tr>
<td>DNO</td>
<td>4,33</td>
<td>4,05</td>
<td>3,74</td>
<td>4,14</td>
<td>4,33</td>
<td>4,00</td>
<td>DE</td>
</tr>
<tr>
<td>endosulfan II</td>
<td>0,003</td>
<td>0,002</td>
<td>0,00</td>
<td>0,01</td>
<td>0,00</td>
<td>0,00</td>
<td>YE</td>
</tr>
<tr>
<td>epoxiconazol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ethofumesaat</td>
<td>0,12</td>
<td>0,09</td>
<td>0,12</td>
<td>0,11</td>
<td>0,12</td>
<td>0,02</td>
<td>WY</td>
</tr>
<tr>
<td>fluazinam</td>
<td>0,19</td>
<td>0,14</td>
<td>0,08</td>
<td>0,13</td>
<td>0,25</td>
<td>0,08</td>
<td>KE</td>
</tr>
<tr>
<td>fluoroxypr</td>
<td>0,03</td>
<td>0,05</td>
<td>0,08</td>
<td>0,00</td>
<td>0,08</td>
<td>0,04</td>
<td>AL</td>
</tr>
<tr>
<td>heptachloor epoxide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hexachloorbenzaan</td>
<td>0,01</td>
<td>0,02</td>
<td>0,01</td>
<td>0,02</td>
<td>0,01</td>
<td>0,01</td>
<td>AN</td>
</tr>
<tr>
<td>kresoxim-methyl</td>
<td>0,06</td>
<td>0,06</td>
<td>0,03</td>
<td>0,06</td>
<td>0,10</td>
<td>0,04</td>
<td>WY</td>
</tr>
<tr>
<td>lindaan</td>
<td>0,08</td>
<td>0,09</td>
<td>0,25</td>
<td>0,03</td>
<td>0,05</td>
<td>0,04</td>
<td>AL</td>
</tr>
<tr>
<td>MCPA</td>
<td>0,05</td>
<td>0,06</td>
<td>0,08</td>
<td>0,04</td>
<td>0,09</td>
<td>0,03</td>
<td>AP</td>
</tr>
<tr>
<td>mecoprop</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td>0,07</td>
<td>0,03</td>
<td>WY</td>
</tr>
<tr>
<td>methiocarb</td>
<td>0,02</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
<td>0,07</td>
<td>0,02</td>
<td>BE</td>
</tr>
<tr>
<td>metolachlool</td>
<td>0,02</td>
<td>0,02</td>
<td>0,06</td>
<td>0,002</td>
<td>0,008</td>
<td>0,004</td>
<td>WY</td>
</tr>
<tr>
<td>mevinoso</td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,002</td>
<td>0,02</td>
<td>0,00</td>
<td>LE</td>
</tr>
<tr>
<td>o,p'-DDD</td>
<td>0,004</td>
<td>0,002</td>
<td>0,001</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>KE</td>
</tr>
<tr>
<td>PCP</td>
<td>0,10</td>
<td>0,14</td>
<td>0,17</td>
<td>0,22</td>
<td>0,08</td>
<td>0,09</td>
<td>AN</td>
</tr>
<tr>
<td>pentachloorbenzaan</td>
<td>0,002</td>
<td>0,004</td>
<td>0,004</td>
<td>0,006</td>
<td>0,005</td>
<td>0,002</td>
<td>AN</td>
</tr>
<tr>
<td>pirimicarb</td>
<td>0,004</td>
<td>0,004</td>
<td>0,00</td>
<td>0,016</td>
<td>0,001</td>
<td>0,000</td>
<td>AN</td>
</tr>
<tr>
<td>pirimifos-methyl</td>
<td>1,26</td>
<td>1,10</td>
<td>1,58</td>
<td>0,71</td>
<td>0,89</td>
<td>1,23</td>
<td>LE</td>
</tr>
<tr>
<td>prochloraz</td>
<td>0,01</td>
<td>0,02</td>
<td>0,00</td>
<td>0,08</td>
<td>0,00</td>
<td>0,00</td>
<td>AN</td>
</tr>
<tr>
<td>procymidon</td>
<td>0,04</td>
<td>0,08</td>
<td>0,02</td>
<td>0,06</td>
<td>0,10</td>
<td>0,13</td>
<td>ZI</td>
</tr>
<tr>
<td>propachloor</td>
<td>0,69</td>
<td>0,63</td>
<td>0,62</td>
<td>0,58</td>
<td>1,00</td>
<td>1,30</td>
<td>KE</td>
</tr>
<tr>
<td>propoxur</td>
<td>0,01</td>
<td>0,01</td>
<td>0,011</td>
<td>0,011</td>
<td>0,001</td>
<td>0,000</td>
<td>DE</td>
</tr>
<tr>
<td>pyrazofos</td>
<td>0,001</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>VE</td>
</tr>
<tr>
<td>simazine</td>
<td>0,01</td>
<td>0,03</td>
<td>0,00</td>
<td>0,02</td>
<td>0,07</td>
<td>0,03</td>
<td>AP</td>
</tr>
<tr>
<td>terbutylazine</td>
<td>0,10</td>
<td>0,07</td>
<td>0,06</td>
<td>0,04</td>
<td>0,04</td>
<td>0,15</td>
<td>GP</td>
</tr>
<tr>
<td>tetramisfenol A</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
<td>0,07</td>
<td>0,01</td>
<td>0,04</td>
<td>ZI</td>
</tr>
<tr>
<td>tolclofos-methyl</td>
<td>0,04</td>
<td>0,16</td>
<td>0,02</td>
<td>0,21</td>
<td>0,33</td>
<td>0,08</td>
<td>AP</td>
</tr>
<tr>
<td>triallat</td>
<td>0,29</td>
<td>0,18</td>
<td>0,15</td>
<td>0,14</td>
<td>0,23</td>
<td>0,21</td>
<td>WY</td>
</tr>
<tr>
<td>trifluralin</td>
<td>0,30</td>
<td>0,40</td>
<td>0,27</td>
<td>0,38</td>
<td>0,46</td>
<td>0,48</td>
<td>YE</td>
</tr>
<tr>
<td>vinclozolin</td>
<td>0,38</td>
<td>0,38</td>
<td>0,10</td>
<td>0,33</td>
<td>0,85</td>
<td>0,25</td>
<td>KE</td>
</tr>
</tbody>
</table>
De atmosferische depositie van PAK en PCB naar het Nederlands oppervlaktewater en naar oppervlaktewater in Noord-Holland in het jaar 2000. De betrouwbaarheid van de in vet gedrukte stoffen is goed. Van de andere is de betrouwbaarheid laag.

<table>
<thead>
<tr>
<th>Atmosferische depositie</th>
<th>Nederlands gemiddelde</th>
<th>Gemiddelde Noord-Holland</th>
<th>Aalsmeer</th>
<th>Andijk</th>
<th>Anna Paulowna</th>
<th>Egmond</th>
<th>Locatie maximum Neder- land</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acenafteen</td>
<td>2.51</td>
<td>2.27</td>
<td>2.77</td>
<td>1.56</td>
<td>1.62</td>
<td>3.14</td>
<td>LA</td>
</tr>
<tr>
<td>acenstyleen</td>
<td>0.19</td>
<td>0.12</td>
<td>0.20</td>
<td>0.08</td>
<td>0.07</td>
<td>0.12</td>
<td>NO</td>
</tr>
<tr>
<td>antraceen</td>
<td>0.64</td>
<td>0.26</td>
<td>0.29</td>
<td>0.18</td>
<td>0.28</td>
<td>0.27</td>
<td>KE</td>
</tr>
<tr>
<td>benzo[a]antraceen</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.11</td>
<td>0.11</td>
<td>0.20</td>
<td>EG</td>
</tr>
<tr>
<td>benzo[a]pyreene</td>
<td>0.21</td>
<td>0.19</td>
<td>0.24</td>
<td>0.14</td>
<td>0.14</td>
<td>0.25</td>
<td>KE</td>
</tr>
<tr>
<td>benzo[b]fluoranteen</td>
<td>0.49</td>
<td>0.45</td>
<td>0.42</td>
<td>0.39</td>
<td>0.33</td>
<td>0.67</td>
<td>KE</td>
</tr>
<tr>
<td>benzo[g,h,i]pyreylene</td>
<td>0.19</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
<td>0.16</td>
<td>0.28</td>
<td>EG</td>
</tr>
<tr>
<td>benzo[k]fluoranteen</td>
<td>0.32</td>
<td>0.27</td>
<td>0.25</td>
<td>0.21</td>
<td>0.21</td>
<td>0.41</td>
<td>KE</td>
</tr>
<tr>
<td>chryseen</td>
<td>0.47</td>
<td>0.45</td>
<td>0.43</td>
<td>0.39</td>
<td>0.34</td>
<td>0.63</td>
<td>NO</td>
</tr>
<tr>
<td>dibenz[a,h]antraceen</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>SP</td>
</tr>
<tr>
<td>fenantreen</td>
<td>8.65</td>
<td>9.08</td>
<td>10.39</td>
<td>7.14</td>
<td>7.69</td>
<td>11.10</td>
<td>NO</td>
</tr>
<tr>
<td>fluoranteen</td>
<td>3.08</td>
<td>3.45</td>
<td>3.36</td>
<td>2.96</td>
<td>2.50</td>
<td>4.97</td>
<td>EG</td>
</tr>
<tr>
<td>fluoreen</td>
<td>4.49</td>
<td>4.15</td>
<td>4.75</td>
<td>3.58</td>
<td>3.32</td>
<td>4.95</td>
<td>NO</td>
</tr>
<tr>
<td>indeno[1,2,3-cd]pyreene</td>
<td>0.17</td>
<td>0.18</td>
<td>0.15</td>
<td>0.16</td>
<td>0.14</td>
<td>0.26</td>
<td>EG</td>
</tr>
<tr>
<td>naftaleen</td>
<td>7.04</td>
<td>7.21</td>
<td>10.37</td>
<td>5.49</td>
<td>5.65</td>
<td>7.32</td>
<td>AL</td>
</tr>
<tr>
<td>pyreene</td>
<td>1.73</td>
<td>1.63</td>
<td>1.77</td>
<td>1.33</td>
<td>1.30</td>
<td>2.13</td>
<td>NO</td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-101</td>
<td>0.009</td>
<td>0.010</td>
<td>0.006</td>
<td>0.007</td>
<td>0.019</td>
<td>0.009</td>
<td>AP</td>
</tr>
<tr>
<td>PCB-118</td>
<td>0.003</td>
<td>0.003</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
<td>0.002</td>
<td>AP</td>
</tr>
<tr>
<td>PCB-138</td>
<td>0.003</td>
<td>0.003</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
<td>0.003</td>
<td>NO</td>
</tr>
<tr>
<td>PCB-153</td>
<td>0.004</td>
<td>0.003</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
<td>0.005</td>
<td>SP</td>
</tr>
<tr>
<td>PCB-180</td>
<td>0.002</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>KE</td>
</tr>
<tr>
<td>PCB-20</td>
<td>0.008</td>
<td>0.008</td>
<td>0.004</td>
<td>0.006</td>
<td>0.008</td>
<td>0.012</td>
<td>NO</td>
</tr>
<tr>
<td>PCB-28</td>
<td>0.009</td>
<td>0.010</td>
<td>0.009</td>
<td>0.009</td>
<td>0.014</td>
<td>0.010</td>
<td>NO</td>
</tr>
<tr>
<td>PCB-35</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.000</td>
<td>0.002</td>
<td>EG</td>
</tr>
<tr>
<td>PCB-52</td>
<td>0.015</td>
<td>0.013</td>
<td>0.009</td>
<td>0.008</td>
<td>0.024</td>
<td>0.012</td>
<td>LA</td>
</tr>
<tr>
<td>PCB-8</td>
<td>0.003</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.003</td>
<td>0.001</td>
<td>NO</td>
</tr>
</tbody>
</table>
Tabel VI.12 De atmosferische depositie van PAK en PCB naar het Nederlands oppervlaktewater en naar oppervlak-
Van de andere is de betrouwbaarheid laag

<table>
<thead>
<tr>
<th>Atmosferische depositie</th>
<th>Nederlands gemiddelde</th>
<th>Gemiddeld Noord-Holland</th>
<th>Aalsmeer</th>
<th>Andijk</th>
<th>Anna Paulowna</th>
<th>Egmond</th>
<th>Locatie maximum Nederland</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acenafteeen</td>
<td>1.60</td>
<td>1.74</td>
<td>1.94</td>
<td>1.06</td>
<td>1.73</td>
<td>2.24</td>
<td>EG</td>
</tr>
<tr>
<td>acenafylene</td>
<td>0.16</td>
<td>0.17</td>
<td>0.34</td>
<td>0.13</td>
<td>0.12</td>
<td>0.07</td>
<td>NO</td>
</tr>
<tr>
<td>antraceen</td>
<td>0.18</td>
<td>0.16</td>
<td>0.16</td>
<td>0.09</td>
<td>0.20</td>
<td>0.19</td>
<td>NO</td>
</tr>
<tr>
<td>benzo[a]antraceen</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.09</td>
<td>EG</td>
</tr>
<tr>
<td>benzo[a]pyreen</td>
<td>0.12</td>
<td>0.13</td>
<td>0.16</td>
<td>0.11</td>
<td>0.13</td>
<td>0.11</td>
<td>AL</td>
</tr>
<tr>
<td>benzo[b]fluoranteen</td>
<td>0.33</td>
<td>0.36</td>
<td>0.48</td>
<td>0.31</td>
<td>0.32</td>
<td>0.33</td>
<td>AL</td>
</tr>
<tr>
<td>benzo[g,h,i]perylene</td>
<td>0.13</td>
<td>0.15</td>
<td>0.20</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
<td>AL</td>
</tr>
<tr>
<td>benzo[k]fluoranteen</td>
<td>0.23</td>
<td>0.27</td>
<td>0.35</td>
<td>0.22</td>
<td>0.25</td>
<td>0.25</td>
<td>AL</td>
</tr>
<tr>
<td>chrysean</td>
<td>0.23</td>
<td>0.21</td>
<td>0.21</td>
<td>0.19</td>
<td>0.20</td>
<td>0.25</td>
<td>EG</td>
</tr>
<tr>
<td>dibenz[a,h]antraceen</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.03</td>
<td>AP</td>
</tr>
<tr>
<td>fenantreen</td>
<td>7.38</td>
<td>8.06</td>
<td>9.52</td>
<td>5.51</td>
<td>7.94</td>
<td>9.28</td>
<td>NO</td>
</tr>
<tr>
<td>fluoranteen</td>
<td>2.68</td>
<td>3.27</td>
<td>3.54</td>
<td>1.96</td>
<td>3.21</td>
<td>4.39</td>
<td>EG</td>
</tr>
<tr>
<td>fluoreen</td>
<td>3.44</td>
<td>3.31</td>
<td>4.00</td>
<td>2.53</td>
<td>2.96</td>
<td>3.75</td>
<td>NO</td>
</tr>
<tr>
<td>indeno[1,2,3-cd]pyrene</td>
<td>0.13</td>
<td>0.14</td>
<td>0.18</td>
<td>0.12</td>
<td>0.12</td>
<td>0.13</td>
<td>AL</td>
</tr>
<tr>
<td>naftaleen</td>
<td>6.34</td>
<td>7.09</td>
<td>11.29</td>
<td>5.24</td>
<td>5.82</td>
<td>6.01</td>
<td>AL</td>
</tr>
<tr>
<td>pyreen</td>
<td>1.44</td>
<td>1.51</td>
<td>1.56</td>
<td>0.90</td>
<td>1.64</td>
<td>1.93</td>
<td>NO</td>
</tr>
</tbody>
</table>

PCB							
PCB-101	0.002	0.002	0.001	0.003	0.001	0.001	LA
PCB-118	0.005	0.005	0.000	0.000	0.000	0.000	LE
PCB-138	0.002	0.001	0.001	0.004	0.001	0.000	KE
PCB-153	0.003	0.002	0.002	0.003	0.003	0.000	KE
PCB-180	0.001	0.001	0.001	0.005	0.000	0.000	AN
PCB-20	0.006	0.005	0.009	0.005	0.003	0.004	LA
PCB-28	0.006	0.003	0.008	0.002	0.000	0.001	LA
PCB-35	0.001	0.001	0.002	0.001	0.002	0.000	AL
PCB-52	0.006	0.004	0.003	0.006	0.004	0.002	KE
PCB-8	0.002	0.001	0.001	0.001	0.001	0.001	NO
Bijlage VII Bijdrage van de verschillende provincies en het buitenland aan de deposits op de meetlocaties

Figuur VII.1 tot en met Figuur VII.5 laten deze bijdragen zien voor de pesticiden *procymidon*, *fluazinam*, *dichloirdos* en *chloorthalonil* en voor de PAK *benzo(a)pyrein*. Uit de figuren blijkt dat het grootste aandeel van de depositie op de meetlocaties uit de eigen provincie afkomstig is. Behalve voor *dichloirdos* en *benzo(a)pyrein* is de bijdrage vanuit het buitenland op de depositie op de meetlocaties klein.

![Diagram](image)

Figuur VII.1 Bijdragen van emissies van *procymidon* per provincie en vanuit het buitenland op de gemiddelde belasting op de meetlocaties (g/ha).
Figuur VII.2 Bijdragen van emissies van fluazinam per provincie en vanuit het buitenland op de gemiddelde belasting op de meetlocaties (g/ha).

Figuur VII.3 Bijdragen van emissies van dichloorvos per provincie en vanuit het buitenland op de gemiddelde belasting op de meetlocaties (g/ha).
Figuur VII.4 Bijdragen van emissies van chloorthalonil per provincie en vanuit het buitenland op de gemiddelde belasting op de meetlocaties (g/ha).

Figuur VII.5 Bijdragen van emissies van Benzo(a)Pyreem per provincie en vanuit het buitenland op de gemiddelde belasting op de meetlocaties (g/ha).
Bijlage VIII De concentratie van enkele polaire pesticiden in neerslag

Tabel VIII.1 De concentratie van enkele polaire pesticiden in neerslag van een beperkt aantal locaties. Achtereenvolgens staan vermeld de stofnaam, de datum waarop de monsternaam werd gestopt (vier weken daarvoor werd deze gestart), en de concentratie van de stof in ng/l.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Datum</th>
<th>Andijk</th>
<th>Delft</th>
<th>Fochteloerveen</th>
<th>Wynandsrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>isoproturon</td>
<td>29-03-00</td>
<td>34</td>
<td>37</td>
<td>28</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>25-04-00</td>
<td>41</td>
<td>60</td>
<td>geen monster</td>
<td>geen monster</td>
</tr>
<tr>
<td></td>
<td>24-05-00</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>21-06-00</td>
<td>< 20</td>
<td>< 20</td>
<td>28</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>16-08-00</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td></td>
<td>13-09-00</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>diuron</td>
<td>29-3-00</td>
<td>< 15</td>
<td>< 15</td>
<td>< 15</td>
<td>< 15</td>
</tr>
<tr>
<td></td>
<td>25-4-00</td>
<td>< 15</td>
<td>32</td>
<td>geen monster</td>
<td>geen monster</td>
</tr>
<tr>
<td></td>
<td>24-5-00</td>
<td>25</td>
<td>< 15</td>
<td>< 15</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>21-6-00</td>
<td>< 15</td>
<td>18</td>
<td>< 15</td>
<td>< 20</td>
</tr>
<tr>
<td></td>
<td>16-8-00</td>
<td>< 7</td>
<td>< 7</td>
<td>< 7</td>
<td>< 7</td>
</tr>
<tr>
<td></td>
<td>13-9-00</td>
<td>< 7</td>
<td>< 7</td>
<td>< 7</td>
<td>< 7</td>
</tr>
<tr>
<td>metoxuron</td>
<td>16-08-00</td>
<td>7</td>
<td>14</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>metabromuron</td>
<td>24-05-00</td>
<td>< 20</td>
<td>< 20</td>
<td>< 20</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>21-06-00</td>
<td>51</td>
<td>< 20</td>
<td>< 20</td>
<td>< 25</td>
</tr>
<tr>
<td>pencycuron</td>
<td>24-05-00</td>
<td>47</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbendazim</td>
<td>29-03-00</td>
<td>< 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21-06-00</td>
<td>< 45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-08-00</td>
<td>< 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13-09-00</td>
<td>< 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chloridazon</td>
<td>25-04-00</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metamitron</td>
<td>24-05-00</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bijlage IX De atmosferische depositie van pesticiden vergeleken met het gebruik van de werkzame stof in Nederland

De tabel laat zien dat er een groot verschil bestaat tussen de verschillende stoffen. Extreme waarden ontstaan door bijdragen van het buitenland en onjuistheden in de geschatte emissie of de depositie.

<table>
<thead>
<tr>
<th>Stof</th>
<th>Totale depositie naar oppervlaktewater als percentage van het verbruik in 2000</th>
<th>Totale depositie naar bodem als % van het verbruik in 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>0,09</td>
<td>0,56</td>
</tr>
<tr>
<td>atrazine</td>
<td>0,04</td>
<td>0,30</td>
</tr>
<tr>
<td>bentazon</td>
<td>0,01</td>
<td>0,08</td>
</tr>
<tr>
<td>captan</td>
<td>0,02</td>
<td>0,07</td>
</tr>
<tr>
<td>chloorevinfos</td>
<td>0,10</td>
<td>0,29</td>
</tr>
<tr>
<td>chlooreprofam</td>
<td>2,16</td>
<td>7,69</td>
</tr>
<tr>
<td>chloopyrphos-methyl</td>
<td>0,16</td>
<td>0,59</td>
</tr>
<tr>
<td>chloorthalonil</td>
<td>0,04</td>
<td>0,12</td>
</tr>
<tr>
<td>diazinon</td>
<td>0,10</td>
<td>0,86</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>151,81</td>
<td>59,64</td>
</tr>
<tr>
<td>dichlooroxyroterin</td>
<td>7,90</td>
<td>39,36</td>
</tr>
<tr>
<td>dimethoat</td>
<td>0,04</td>
<td>0,26</td>
</tr>
<tr>
<td>DNOC</td>
<td>26,71</td>
<td>166,26</td>
</tr>
<tr>
<td>ethofumesate</td>
<td>0,03</td>
<td>0,20</td>
</tr>
<tr>
<td>ethyl-parathion</td>
<td>0,01</td>
<td>0,05</td>
</tr>
<tr>
<td>fluazinam</td>
<td>0,02</td>
<td>0,10</td>
</tr>
<tr>
<td>fluoroxypry</td>
<td>0,17</td>
<td>0,54</td>
</tr>
<tr>
<td>kresoxim-methyl</td>
<td>0,92</td>
<td>5,10</td>
</tr>
<tr>
<td>lindana</td>
<td>1,41</td>
<td>5,86</td>
</tr>
<tr>
<td>MCPA</td>
<td>0,05</td>
<td>0,32</td>
</tr>
<tr>
<td>MCPP</td>
<td>0,04</td>
<td>0,26</td>
</tr>
<tr>
<td>methiocarb</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>metolachloor</td>
<td>0,05</td>
<td>0,31</td>
</tr>
<tr>
<td>mevincon</td>
<td>0,11</td>
<td>0,21</td>
</tr>
<tr>
<td>pirimicarb</td>
<td>0,01</td>
<td>0,05</td>
</tr>
<tr>
<td>pirimiphos-methyl</td>
<td>0,47</td>
<td>0,12</td>
</tr>
<tr>
<td>prochloraz</td>
<td>0,01</td>
<td>0,09</td>
</tr>
<tr>
<td>procyromon</td>
<td>0,70</td>
<td>2,64</td>
</tr>
<tr>
<td>propachlor</td>
<td>1,86</td>
<td>4,92</td>
</tr>
<tr>
<td>propoxur</td>
<td>8,67</td>
<td>44,29</td>
</tr>
<tr>
<td>pyrazofos</td>
<td>0,15</td>
<td>0,48</td>
</tr>
<tr>
<td>simazine</td>
<td>0,13</td>
<td>0,47</td>
</tr>
<tr>
<td>terbutylazine</td>
<td>0,06</td>
<td>0,46</td>
</tr>
<tr>
<td>tolclofos-methyl</td>
<td>0,14</td>
<td>0,68</td>
</tr>
<tr>
<td>triallaat</td>
<td>5,57</td>
<td>9,58</td>
</tr>
<tr>
<td>vinclozolin</td>
<td>0,69</td>
<td>3,17</td>
</tr>
<tr>
<td>mediaan</td>
<td>0,11</td>
<td>0,46</td>
</tr>
</tbody>
</table>